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ABSTRACT The complex cross talk between metabolism and gene regulatory net-
works makes it difficult to untangle individual constituents and study their precise roles
and interactions. To address this issue, we modularized the transcriptional regulatory
network (TRN) of the Staphylococcus aureus USA300 strain by applying independent
component analysis (ICA) to 385 RNA sequencing samples. We then combined the mod-
ular TRN model with a metabolic model to study the regulation of carbon and amino
acid metabolism. Our analysis showed that regulation of central carbon metabolism by
CcpA and amino acid biosynthesis by CodY are closely coordinated. In general, S. aureus
increases the expression of CodY-regulated genes in the presence of preferred carbon
sources such as glucose. This transcriptional coordination was corroborated by meta-
bolic model simulations that also showed increased amino acid biosynthesis in the pres-
ence of glucose. Further, we found that CodY and CcpA cooperatively regulate the
expression of ribosome hibernation-promoting factor, thus linking metabolic cues with
translation. In line with this hypothesis, expression of CodY-regulated genes is tightly
correlated with expression of genes encoding ribosomal proteins. Together, we propose
a coarse-grained model where expression of S. aureus genes encoding enzymes that
control carbon flux and nitrogen flux through the system is coregulated with expression
of translation machinery to modularly control protein synthesis. While this work focuses
on three key regulators, the full TRN model we present contains 76 total independently
modulated sets of genes, each with the potential to uncover other complex regulatory
structures and interactions.

IMPORTANCE Staphylococcus aureus is a versatile pathogen with an expanding anti-
biotic resistance profile. The biology underlying its clinical success emerges from an
interplay of many systems such as metabolism and gene regulatory networks. This
work brings together models for these two systems to establish fundamental princi-
ples governing the regulation of S. aureus central metabolism and protein synthesis.
Studies of these fundamental biological principles are often confined to model
organisms such as Escherichia coli. However, expanding these models to pathogens
can provide a framework from which complex and clinically important phenotypes
such as virulence and antibiotic resistance can be better understood. Additionally,
the expanded gene regulatory network model presented here can deconvolute the
biology underlying other important phenotypes in this pathogen.

KEYWORDS network modeling, Staphylococcus aureus, gene regulation, metabolism

etabolism plays an integral role in infection and antimicrobial resistance (AMR) in
the leading human bacterial pathogen Staphylococcus aureus. Metabolic require-
ments specific to infection, intracellular persistence, biofilm formation, and coloniza-
tion are rapidly being uncovered (1-6). Furthermore, the central role of metabolism in
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AMR and persistence is also coming into view, adding to the complexity of known
AMR mechanisms (7-9). The complex metabolic circuits and responses underlying
these phenomena are nevertheless difficult to unravel. Even relatively well-understood
systems such as S. aureus central carbon metabolism can be difficult to fully map, as
they are layered with multiple levels of gene regulation, posttranslational and bio-
chemical controls, and unexpected molecular interactions (1, 10-12). Some of these
complexities can be captured by genome-scale metabolic models (GEMs) that allow
rapid query of metabolic complexities through simulations of metabolic flux states,
knockout experiments, multistrain metabolic comparisons, and calculation of meta-
bolic characteristics (13, 14). Alternatively, coarse-grained modeling of metabolism
attempts to peer beyond the detailed complexity and discover the general principles
governing the biological systems of interest (15-17). In the present work, we took
guidance from a coarse-grained model proposed in Escherichia coli coupled with ge-
nome-scale analyses of S. aureus transcriptional regulation and metabolism to uncover
a similar staphylococcal system that balances resource allocation between carbon and
nitrogen metabolism (15, 17).

Biological trade-offs represent an optimization frontier, where the cell must strike a
balance between its multiple objectives and their limitations (15, 18). Signatures of these
balancing acts can be found in transcriptomes and become apparent when their archi-
tecture is viewed at the systems level (19). We previously described one such trade-off
and its transcriptional imprint using independent data sets from Gram-negative E. coli
and Gram-positive S. aureus, in which a balance was observed between genes regulated
by stress-associated sigma factors and growth-associated translation machinery (20, 21).
Here, we expand significantly beyond those observations to describe a trade-off
between carbon and nitrogen metabolism in strains of the globally disseminated, hyper-
virulent S. aureus USA300 lineage.

We first greatly expanded on our previous model of transcriptional regulation in
USA300 strains to incorporate all publicly available RNA sequencing data from the
Sequence Reads Archive (SRA) (21). Models were then generated by applying inde-
pendent component analysis (ICA), which calculates independently modulated sets of
genes (iModulons) and their activities present in the input RNA sequencing samples.
iModulons represent sources of signals in the expression data, with transcriptional reg-
ulators being the most common source. Our model showed that the activities of two
global metabolic regulators, CcpA and CodY, which play critical roles in central carbon
and nitrogen metabolism, respectively, are negatively correlated against one another.
This negative correlation pointed to a condition-specific reallocation of resources to-
ward different metabolic subsystems. GEMs fitted with metabolomics data confirmed
the inferences made from the transcriptomic data. Furthermore, GEMs revealed specific
metabolic interfaces where coordination of metabolism by the two regulators is
required for optimal biomass production, including glutamate dehydrogenase and the
folate cycle. Placing genes from CodY and CcpA-associated iModulons onto the meta-
bolic map demonstrated that they did not share any metabolic reactions but coregu-
lated expression of a gene encoding ribosome hibernation factor. In light of these
observations, we propose a model whereby CcpA and CodY coordinate gene expres-
sion for carbon metabolism, nitrogen metabolism, and translation, thus modularly con-
trolling protein production at specific stages.

RESULTS

Expanding the USA300 iModulons using RNA sequencing data from the SRA
database. Our previous work outlined 29 iModulons for USA300 strains that were gener-
ated from 108 in-house RNA sequencing data (21). To expand the previous iModulons cov-
erage of the TRN, we took advantage of the rapidly growing, publicly available S. aureus
RNA sequencing samples (see Fig. S1 in the supplemental material). We queried the
Sequence Reads Archive (SRA) for all available USA300-specific RNA sequencing data and
combined it with 64 newly generated samples. Of the 576 sequencing samples available,
385 passed the stringent quality control/quality assurance (QC/QA) pipeline and were
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FIG 1 Updated iModulons for USA300 strains. (A) Principal-component analysis (PCA) of 385 RNA sequencing samples from diverse growth conditions
that were used to generate the expanded USA300 iModulons. The log TPM of each sample was normalized to project-specific control conditions to
reduce signal from batch effect before projecting them onto the principal components. (B) Association between iModulons and previously published
regulons. iModulon recall represents the fraction of iModulon genes that were present in the regulon, while regulon recall represents the fraction of
regulon genes that were present in the iModulon. iModulons that have high iModulon recall and high Regulon recall (e.g., PyrR, PurR) have very high
overlap in gene content. (C) TreeMap of iModulon names, sizes (gene content), and types in the current model after manual curation. The size of the
boxes correspond to the number of genes in the iModulon. stat, stationary; exp, exponential; TSB, tryptic soy broth; SCFM2, synthetic cystic fibrosis

medium 2; CDM, chemically defined medium; TPM, transcripts per million.

therefore incorporated into the new model (see Materials and Methods). The final set of
samples contained data from at least 7 different USA300 isolates, 4 growth phases (expo-
nential, stationary, biofilm, and infection), and 10 base media (Fig. S2).

Before applying ICA, we normalized the log-transformed transcripts per million
(log-TPM) data to a project-specific control condition. This reduced batch-specific varia-
tion in the data and reduced the presence of iModulons not associated with biological
signals. Principal-component analysis (PCA) of the log-TPM data showed that normal-
ized samples tended to cluster with media types and growth phases rather than by
data source (Fig. 1a). For example, data from S. aureus grown to late-log phase in
SCFM2 (synthetic cystic fibrosis sputum medium 2) and to stationary phase in chemi-
cally defined medium (CDM) did not cluster together, despite being from the same
bioproject.

Application of ICA to this normalized expression data resulted in 76 independent
components, and genes with high absolute weightings within each component were
assigned to a corresponding iModulon. These enriched iModulon genes were then
compared with existing literature of predicted regulons in S. aureus. Those iModulons
that had significant overlap with other predicted regulons were named after the
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associated regulator (Fig. 1b). Last, some iModulons with no known regulators but
associated with other biological processes (e.g., prophages, translation) were manually
curated. In total, we labeled 60 of the 76 iModulons with either a regulator or a biologi-
cal process (Fig. 1¢). The remaining uncharacterized iModulons represent signals in the
S. aureus transcriptome with currently unknown origins, thus providing a roadmap to
discovery of missing parts of the known TRN. In addition to the structure of each
iModulon, the activities of each of the 76 iModulons in the 385 input samples were also
calculated. The activity represents the role of each iModulon (and the associated regula-
tor, if known) in shaping the transcriptome in the given sample. Higher iModulon activity
represents a higher expression level of genes with positive weightings in the iModulon
and lower expression of genes with negatively weighted genes (20).

CcpA and CodY iModulon activities highlight balance of carbon and nitrogen
metabolism. Cumulatively, the 70 iModulons captured ~70% of the variance in the
input transcriptomic data. The CodY-1, CcpA-1 (henceforth referred to as simply CodY
and CcpA iModulons, respectively), and Translation iModulons explained the most vari-
ation in the data (Fig. 2a). CcpA is the catabolite repressor protein in Firmicutes that
represses genes involved in alternate carbon utilization, as well as other central carbon
metabolic pathways, such as the tricarboxylic acid (TCA) cycle, in the presence of high
concentrations of glucose. CodY, on the other hand, globally represses the genes
required for amino acid biosynthesis in response to high branched-chain amino acid
(BCAA) or GTP concentrations. Lastly, the Translation iModulon almost entirely consists
of ribosomal genes (e.g., rplK, rplA, etc.) and genes involved in translation, such as infA
and fusA, which encode translation initiation factor IF-1 and elongation factor G,
respectively (Fig. 2b). This iModulon has been enriched in almost all bacteria and arch-
aea for which iModulons have been calculated (20, 22-25).

Interestingly, the activities of these three iModulons were highly correlated across all
samples (Fig. 2c) and formed a large cluster, along with other metabolic iModulons
(Fig. S3). Along with CodY, CcpA, and Translation iModulons, activities of ILVopr
(iModulon containing the operon with isoleucine, leucine, and valine biosynthesis
genes), MntR, LacR, and PurR iModulons were also highly correlated. The correlation of
CcpA with LacR simply reflects the catabolite repression of lactose utilization genes by
the regulator CcpA. Similarly, the ILV operon is regulated globally by CodY and locally by
leucine attenuator (26). This multilayer regulation likely explains why this operon formed
its own iModulon whose activity was closely correlated with CodY. The MntR iModulon
contains genes required for manganese uptake, and its coordinated activity with CcpA
confirms the association of manganese concentration with glycolytic flux (27).

The correlated activity of CcpA and CodY iModulons suggested that S. aureus carefully
coordinates its central carbon and nitrogen metabolism (Fig. 2d). Close examination of the
activities of these two iModulons showed a biphasic relationship. In conditions with pre-
ferred carbon sources, and therefore low CcpA iModulon activity, CodY activity generally
increased. This effect was observed when glucose was added to both a complex medium
(cation-adjusted Mueller-Hinton broth, or CA-MHB) and to a defined medium (chemically
defined medium, or CDM1). Other conditions without explicitly controlled glucose levels
that showed low CcpA activity still had concomitant high CodY activity, suggesting that
this effect was not glucose specific. In conditions with already low CodY activity, however,
removal of glucose (RPMI~ glucose; substituted with maltose) did not lead to further
change in CodY activity, creating the second phase of the trade-off plane.

On the other hand, an increase in CodY iModulon activity did not necessarily lead to
decrease in CcpA activity (Fig. 2d, red markers). Samples from several projects where the
codY gene was interrupted showed minimal effect on CcpA iModulon activity. These
samples fell well outside the CcpA-CodY trade-off line (Fig. 2d, gray dashed lines). Similar
effects can also be observed in samples treated with subinhibitory concentrations of
mupirocin. Mupirocin activates the stringent response in S. aureus, which leads to con-
version of GTP to ppGpp and subsequent derepression of the CodY regulon (28). As
change in CcpA activity leads to change in CodY activity but not necessarily vice versa,
these data suggest that CcpA works “upstream” of CodY.
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Metabolic modeling supports coupling of CcpA and CodY activities. To inde-
pendently confirm the metabolic interaction between CodY and CcpA, we used a previously
published USA300 strain-specific genome-scale metabolic model (GEM) (29). GEMs are cura-
ted mathematical models of an organism's metabolic network that can be used to simulate,
study, and design the metabolic pathways using a wide range of constraints-based recon-
struction and analysis (COBRA) tools (14, 30).

One such method, parsimonious flux balance analysis (pFBA), can be used to
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calculate the metabolic flux state that optimizes a phenotype while minimizing total
metabolic flux in a given condition (13, 31). pFBA thus represents a parsimonious use
of the metabolic proteome. Here, we used pFBA to determine the metabolic flux states
that maximize S. aureus biomass production given the measured uptake and secretion
rates of various amino acids and sugars in chemically defined medium (CDM) and CDM
with glucose (CDMG) (10). In agreement with increased CodY iModulon activity in
CDMG, total flux through reactions catalyzed by enzymes that are encoded in CodY
iModulon genes (“CodY reactions” for short) increased from 3.9 mmol/gram dry weight
(gDW)/h to 5.5 mmol/gDW/h in the presence of glucose (Fig. 3a). The total sum of
fluxes through CcpA reactions in our pFBA simulations did not change drastically
between CDM and CDMG (Fig. S4). Many CcpA fluxes simply reversed directions (e.g.,
reactions involved in the tricarboxylic acid cycle), some of which are described in detail
in the next section.

pFBA, however, gives an exact optimal solution and therefore does not account for
variations or errors in input uptake data. We addressed this issue by sampling the
CDM- and CDMG-specific models, which give a distribution of feasible fluxes in each of
the respective conditions. We then mapped the condition-specific flux distributions to
various amino acid biosynthetic pathways. For simple interpretation, we excluded
amino acids that serve as intermediates for biosynthesis of other amino acids (e.g., glu-
tamine, glutamate, and serine) and included only those amino acids for which unique
biosynthetic pathways could be defined (see Materials and Methods). Confirming pFBA
analysis, 5 out of the 6 amino acid biosynthetic pathways had increased flux in CDMG
compared to CDM (Fig. 3b). The results of these two TRN-agnostic metabolic modeling
methods are in agreement with our observation that CodY iModulon activity increases
in the presence of glucose.

Transcriptional coordination of CcpA and CodyY is likely due to flux coupling at
metabolic interfaces. CcpA and CodY iModulons contained 110 and 86 genes, respec-
tively. Most of these genes are involved in central carbon and amino acid metabolism.
Despite the large iModulon sizes and close metabolic proximity of the regulated genes,
the two iModulons did not share any genes encoding metabolic enzymes. The correla-
tion in iModulon activities, however, suggested that CcpA reactions and CodY reactions
must be coordinated at a metabolic level. Using the USA300 GEM, we looked for this
coordination at the metabolite interface between CcpA and CodY reactions, i.e., metabo-
lites that are involved in both CcpA and CodY reactions. We found these metabolic inter-
faces by systematically identifying all metabolites in USA300 GEM that can be found in
both CodY and CcpA reactions. After taking out “nonspecific” metabolites and cofactors
(e.g., ATP, H,O, NADH, etc.), we were left with 22 metabolites at the interface (Table S1).
While some of these metabolites, such as pyruvate, glutamate, and oxaloacetate, are
expected, as they play a crucial role in both carbon and nitrogen metabolism, other
metabolites, such as N-succinyl-2-.-amino-6-oxoheptanedioate and tetrahydrofolate
(THF), are less understood in the context of this trade-off. To further understand how a
change in simulated flux through CcpA and CodY reactions in CDM and CDMG altered
these key metabolic interfaces, we mapped the pFBA solution fluxes from each media to
the reactions around two of these interfaces, glutamate and methyl-THF.

The glutamate-alpha-ketoglutarate (akg) link is a closely studied interface in S. aur-
eus that connects amino acid and central carbon metabolism (5, 10). The main enzyme
at the interface, glutamate dehydrogenase (GLUDy), reversibly interconverts akg and
glutamate and is encoded by the gudB gene, a constituent of the CcpA iModulon.
However, this interconversion also acts as an amine group donor or acceptor to 3
CcpA reactions and 8 CodY reactions (Table S1). In glucose-free CDM, pFBA solution
was consistent with a previous observation showing proline is converted to akg via
glutamate and eventually fuels gluconeogenesis (10). However, in CDMG, the flux
through GLUDy changes direction and catalyzes conversion of akg to glutamate
instead (Fig. 3C). This makes up ~98% of total flux that consumes akg. The glutamate,
in turn, acts as an amine group donor for biosynthesis of various amino acids and
accounts for ~80% of total flux generating akg in CDMG (Fig. 3D). pFBA solution of
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(purple bars). The previously recognized SigB(red) and CodY(purple) binding sites and newly proposed CcpA (orange) binding site are highlighted. (C) The
negative correlation between CodY and Translation iModulon activity suggests coordination of metabolism and translation in S. aureus. As with CcpA and
CodyY association, samples where CodY activity is altered by genetic disruption of codY or by treatment with mupirocin (in red) break this coordination. Other

samples are colored in green-blue palette based on Translation iModulon activity.

this interface therefore shows that in the absence of glucose, the GLUDy reaction con-
verts glutamate to akg to fuel gluconeogenesis, but in the presence of glucose, it con-
verts akg to glutamate to fuel amino acid biosynthesis.

The folate cycle represents another metabolic interface of CcpA and CodY reactions.
The folate cycle is required for one-carbon metabolism, nucleotide biosynthesis, and
amino acid metabolism, and the pathway leading up to the cycle is the target of sul-
fonamide-class antibiotics (32). The folate cycle consists of 2 CodY reactions, MTHFR3
and methionine synthase (METS), and one CcpA reaction, GCCabc (glycine cleavage
complex) (Fig. 3E). In CDM, THF is converted into 5,10-methylenetetrahydrofolate
(mITHF) by the GCCabc reaction, which cleaves glycine in the process (Fig. 3F). THF is
then regenerated from mITHF by the GHMT2r reaction, which also consumes glycine
and generates serine. This consumption of glycine in the folate cycle by the CcpA reac-
tion is coupled with increased transport of glycine by CodY-regulated GLYt2. However,
in CDMG, where CcpA iModulon activity is low, there is no flux through the CcpA reac-
tion, GCCabc. Instead, GHMT2r runs in “reverse” to convert THF from mITHF, consum-
ing serine and generating glycine instead. Together, combining iModulon structure
with metabolic simulation demonstrates how S. aureus coordinates flux through CcpA
and CodY iModulon reactions at these key metabolic interfaces, despite not sharing
any genes at the regulatory level.

Expression levels of translation-associated genes are responsive to CcpA and
CodyY activities. While CcpA and CodY iModulons do not share any metabolic genes,
hpf, which encodes ribosomal hibernation-promoting factors (HPFs), is a gene found in
both iModulons (Fig. 4a). HPF is a small peptide that dimerizes 70S ribosomal subunits
to form inactive 100S subunits (33, 34). It plays an important role in stress response
and nutrition limitation and protects ribosomal pools from degradation (35-37).
Previous studies in S. aureus have shown that SigB and CodY regulate hpf expression in
response to heat and nutritional stress (35). iModulon structure confirms the role of
the CodY and suggests an additional layer of control by CcpA.

Chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo)
data from our previous work found two CodY binding sites in the regulatory region of
the hpf gene (Fig. 4b) (38). To confirm the role of CcpA in hpf expression, we searched
for the catabolite repressor element motif (WTGNNARCGNWWWCAW) from Bacillus
subtilis in the same region (39). A matching motif was found in the region between the
two CodY binding peaks (false-discovery rate [g] = 0.00905). This architecture, with two
CodY binding sites flanking the CcpA binding site, is also found in the regulatory
region of the B. subtilis BCAA operon, where both regulators contribute to the expres-
sion of the operon genes (40). The signal from expression data and the presence of
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FIG 5 Proposed coarse-grained model of protein biosynthesis regulation in S. aureus. The solid lines
represent the parts of the protein synthesis pathway controlled by CcpA (purple) and CodY (green).
The dashed lines represent new proposed roles of these regulators in coordinating carbon and
nitrogen metabolism (A) and linking metabolic gene expression with expression of translation-
associated proteins (B, C). At the regulatory level, CcpA and CodY activities are coordinated at high
glucose conditions. Similarly, CodY, but not CcpA, activity is correlated with the activity of Translation
iModulon. CcpA and CodY also feed forward to regulate the expression of the hpf gene, which
encodes a hibernation factor that can alter the fraction of active ribosomes in the cell. Through this
mechanism, S. aureus may be changing the concentration of the active ribosome in response to
metabolic cues.

binding motifs suggests that CcpA regulates hpf along with the previously identified
regulators, CodY and SigB.

In addition to coordinated regulation of the translation-associated hpf gene, CodY
activity was also strongly correlated with Translation iModulon activity. In contrast,
CcpA and Translation iModulon activities showed little correlation between them
(Fig. S5). Similar to CcpA and CodY activity correlation, codY knockout and stringent
response activation by mupirocin also disrupted correlation with Translation iModulon
(Fig. 4c¢). This also suggested that the signal controlling Translation iModulon gene
expression also works upstream of CodY, as interruption of CodY had little effect on
Translation iModulon activity. While the coordination of the two iModulon activities is
apparent, we were unable to further interrogate the nature of this relationship since
the signal behind the Translation iModulon is yet to be identified.

DISCUSSION

Based on the data presented here, we propose a coarse-grained model of transcrip-
tional regulation of metabolism involved in protein synthesis in S. aureus USA300 strains
(Fig. 5). It is motivated by the model of proteome coordination in E. coli and extends its
principles to nonmodel pathogenic organisms (15). The coarse-grained model simplifies
metabolism underlying protein synthesis into three steps, (i) the generation of precur-
sors from the carbon source, (ii) biosynthesis of amino acids from precursors or direct
transport from the medium, and (jii) synthesis of peptides from amino acids via transla-
tion. The generation of precursors from carbon sources is largely regulated by CcpA
(Fig. 5, purple arrow). CcpA represses alternate carbon sources (including amino acids
such as proline, glutamine, and aspartate) in the presence of preferred carbon (such as
glucose) and regulates other key aspects of central metabolism, such as gluconeogenesis
and the TCA cycle, that are necessary to generate various precursors (1, 10, 41-43). The
precursors in our model are represented by the metabolites at the CcpA-CodY interface
derived from the USA300 GEM (see Table S1 in the supplemental material). These precur-
sors are then converted to amino acids via CodY-regulated gene products (green arrow)
and polymerized by ribosomes into proteins (light blue arrow) (38, 43, 44).

Our analysis suggests that S. aureus USA300 strains coordinate their CcpA and CodY
activity to regulate carbon and nitrogen flow through the system (dashed orange
arrow). Metabolic modeling in CDMG shows increased flux through amino acid biosyn-
thetic reactions compared to CDM. The results of this TRN-agnostic metabolic model
agree with the increased CodY activity in CDMG and other glucose-containing media.
Additionally, we also found a feed-forward regulation whereby CcpA and CodY control
the expression of the gene encoding the HPF protein, which sequesters ribosomes into
inactive 100S forms, suggesting a mechanism by which translation is coordinated with
the metabolic state of the cell (dashed red arrows) (33, 35).

Last, the activity of the Translation iModulon is also closely correlated with CodY activity,
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which may act as an additional layer of coordination between metabolism and translation
(dashed blue arrows). However, we have yet to identify the signal or regulator controlling
the Translation iModulon activity, and therefore, the source of this concomitant change in
expression along with CodY is unclear. rRNA expression is regulated by ppGpp during the
stringent response, which can be activated by mupirocin treatment (28, 45). We therefore
expected mupirocin to also have an effect on Translation iModulon activity, but we found
that while CodY activity increased in response to mupirocin as expected, there was minimal
change in Translation activity (Fig. 4c). This suggests that stringent response, at least when
induced by mupirocin treatment, does not play a major role in the expression of Translation
iModulon genes.

Despite close coordination of metabolic flux at different interfaces between CcpA
and CodY reactions, it is still not clear how CcpA and CodY activities are coordinated.
In E. coli, Kochanowski et al. have observed similar coordination between anabolic and
catabolic fractions of metabolism (46). The authors attributed active regulation by Crp
and passive changes in metabolic fluxes in response to change in metabolite concen-
trations as the source of the coordination. Other nonmetabolic constraints could also
play a role in this coordination. The agreement between our metabolic model and the
iModulon activities only arises after the metabolic model is constrained using experi-
mentally measured amino acid uptake rates. This suggests that other nonmetabolic
factors may be leading to differential amino acid uptake rates in glucose media and
subsequently leading to the change in CodY activity. In this sense, the problem may
be similar to the inability of unconstrained metabolic models to predict overflow me-
tabolism, which has been postulated to result from other nonmetabolic constraints,
such as proteome and membrane real estate allocation (47, 48). The root of this rela-
tionship, whether metabolic or nonmetabolic in nature, is yet to be determined.

The analysis of the coarse-grained model of metabolic gene regulation presented
here was enabled by a computable model of TRN. iModulons enable us to query the
TRN at multiple scales, giving insights into TRN from single-gene membership level to
global coordination of regulators. By modularizing the TRN, our analysis enabled us to
unravel complex regulatory and metabolic interactions to understand regulation of the
central metabolism one regulator at a time. This modularization can also be used to
continually expand on the presented model. For example, our previous works have
shown that Translation iModulon activity in E. coli and S. aureus is closely correlated
with stress-associated alternate sigma factors (20, 21). This points to a possible entry
point for incorporation of general stress response with metabolism and protein synthe-
sis. Similarly, we have also found that both PyrR and PurR activity is correlated with
CodY and CcpA, which may provide insights into the regulation of nucleotide biosyn-
thesis in response to carbon or nitrogen availability. While we mainly focused on 3
iModulons, CcpA, CodY, and Translation, the current model contains 76 total iModulons,
each of them rich with information about transcriptional regulation and physiology of S.
aureus. We thus provide a conceptual framework for overall coordination of metabolism
in S. aureus and approaches to systematically expand and detail the model proposed.

MATERIALS AND METHODS

Strains and growth conditions. The S. aureus USA300 isolate, LAC, and its derivative, JE2, were
used to collect the new RNA sequencing data in this study. The complete description and condition for
each of the samples can be found in Table S2 in the supplemental material. For RNA sequencing from
knockout samples, isolates from the Nebraska Transposon Mutant Library were utilized (49). Unless
specified otherwise, samples were grown in duplicates in 20 mL of respective media until they reached
the optical density at 600 nm (ODg,,) of 0.5. Three milliliters of culture was harvested and immediately
mixed with 6 mL of Qiagen RNAprotect bacteria reagent and incubated at room temperature for 5 min.
The supernatant was decanted after the samples were centrifuged for 10 min and 17,500 rpm. The
remaining cell pellets were stored at —80°C until they were prepared for RNA extraction.

RNA extraction and sequencing. Total RNA was isolated from the cell pellet in the Qiagen RNeasy
minikit columns by following vendor procedures. An on-column DNase treatment was performed for 30 min
at room temperature. The rRNA was removed using RiboRid protocol, as described before (50). RNA was
quantified using a NanoDrop and quality assessed by running an RNA nanochip on a bioanalyzer (Agilent,
CA). A Swift RNA library kit was used following the manufacturer’s protocol to create sequencing libraries.
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Preparing RNA sequencing data for iModulon calculation. The iModulons were calculated from
publicly available RNA sequencing data from SRA and the newly collected data in this study using
PyModulon python package (51). The steps used to calculate the iModulons described here were all
completed using this package. All RNA sequencing data labeled with S. aureus taxonomic ID were down-
loaded and manually curated to obtain only the samples that were from USA300 isolates. Raw fastq files
from curated samples were downloaded, trimmed with TrimGalore, and then aligned to the USA300
TCH1516 genome (GenBank accession nos. NC_010079, NC_012417, and NC_010063) using Bowtie2
(52). QC/QA stats were collected on each sample using MultiQC, and samples that did not pass the QC
thresholds (e.g., low read depth, low correlation between replicates, missing metadata) were discarded
(53). Transcripts per million (TPM) were calculated from the remaining high-quality RNA sequencing
samples. TPM were log transformed and normalized to a control condition within the same bioproject.

Calculating iModulons from RNA sequencing data. Scipy’s implementation of FastICA was applied
to log-transformed and normalized TPM data to generate independent components (ICs) and their activ-
ities (54, 55). Unlike other decomposition methods, ICA requires the number of dimensions to be calcu-
lated as an input. Therefore, various models with different dimensionality were created, and the one
that maximized regulatory iModulons and minimized single-gene iModulon was chosen (56). The
iModulons were then automatically annotated if they overlapped significantly with a curated list of
known or predicted regulons and genomic features (e.g., prophages, SCCMec, ACME, etc.) in S. aureus.
Other iModulons, such as “Translation” or “Autolysin,” were manually annotated, as all genes contained
within the iModulons have a single function. The gene content of iModulon can be found in Table S2.

Genomic-scale modeling of S. aureus USA300 metabolism. The USA300-specific genome-scale
model (GEM) iYS854 was used for all metabolic simulations in the paper. The exchange rates of amino acids,
glucose, ammonium, and acetate were adjusted to constrain the model to CDM- or CDMG-specific condi-
tions as described in detail before (29). Briefly, the uptake or secretion rate for each metabolite from Halsey
et al. was normalized by growth rate to get the growth-adjusted solute uptake rate (10). The exchange rates
were then constrained to =15% of uptake and exchange rate to account for variance in the data.

Once constrained, the model was then used to calculate the flux of each medium using pFBA as
implemented in the COBRApy package (30, 31). To get the CodY iModulon-specific flux, genes in the
CodY iModulon were first mapped to metabolic reactions using the gene product rule (GPR). The abso-
lute values of fluxes from the pFBA solution for the CodY reactions were then summed to get the final
CodY iModulon flux.

To calculate the valid amino acid biosynthesis pathway-specific flux distribution, the solution spaces
of CDM- and CDMG-specific models were sampled 10,000 times using the artificial centering hit-and-run
algorithm (57). Next, the reactions in each amino acid biosynthetic pathway were determined with the
MinSpan algorithm (58). MinSpan calculates the set of shortest metabolic pathways that are linearly in-
dependent of one another and span the null space of the input model. Each independent pathway
defines a mass-balanced set of reactions and therefore enables unbiased modularization of metabolism
into biologically meaningful pathways. The sampled fluxes (v) can therefore be represented as linear
weightings (a) of minspan pathways (P), where

v=PX «a

The sampled fluxes were converted to pathway-specific weightings (pathway fluxes) using the min-
span matrix. Pathways containing amino acid biosynthesis were manually curated, and only amino acid
biosynthesis pathways that did not appear in multiple MinSpan pathways were used for analysis, as they
can be easily interpreted and do not require analyzing linear combinations of multiple pathways.

Last, the interface metabolites were determined by comparing all metabolites that were involved in at
least one CodY and one CcpA reaction. The common metabolites ADP, ATP, CO,, coenzyme A, H,O, hydrogen
atom, sodium ion, NAD, NADH, NADP, NADPH, ammonium (NH4), and phosphate were excluded from this
designation.

Motif enrichment. The 150 base pairs upstream of the hpf gene (USA300HOU_RS04065) were
scanned for the CcpA motif (WTGNNARCGNWWWCAW) using find individual motif occurrence (FIMO)
within the MEME suite (39, 59).

Data and code availability. All RNA sequencing data used in this work are available publicly at
Sequence Reads Archive (SRA). The accession numbers for individual samples can be found in Table S2. The
code used to create the model and generate all the figures in the paper can be found on GitHub (https://
github.com/sapoudel/metabs-paper-code). An interactive version of the iModulon model is also available at
iModulonDB (https://imodulondb.org/).

SUPPLEMENTAL MATERIAL
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TEXT S1, DOCX file, 0.01 MB.
FIG S1, EPS file, 0.8 MB.
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