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ABSTRACT Antimicrobial peptides (AMPs), also known as host
defense peptides, are small naturally occurring microbicidal
molecules produced by the host innate immune response
that function as a first line of defense to kill pathogenic
microorganisms by inducing deleterious cell membrane
damage. AMPs also possess signaling and chemoattractant
activities and can modulate the innate immune response to
enhance protective immunity or suppress inflammation.
Human pathogens have evolved defense molecules and
strategies to counter and survive the AMPs released by host
immune cells such as neutrophils and macrophages.
Here, we review the various mechanisms used by human
bacterial pathogens to resist AMP-mediated killing, including
surface charge modification, active efflux, alteration of
membrane fluidity, inactivation by proteolytic digestion,
and entrapment by surface proteins and polysaccharides.
Enhanced understanding of AMP resistance at the molecular
level may offer insight into the mechanisms of bacterial
pathogenesis and augment the discovery of novel therapeutic
targets and drug design for the treatment of recalcitrant
multidrug-resistant bacterial infections.

Abbreviations: ABC, adenosine triphosphate-binding
cassette; AMPs, antimicrobial peptides; L-Ara4N,
4-amino-4-deoxy-L-arabinose; GAC, group A carbohydrate;
GAS, group A Streptococcus; GBS, group B Streptococcus;
GlcNAc, N-acetylglucosamine; HBD 1-6, human β-defensin
1-6; HD 5-6, human α-defensin 5-6; HNP 1-4, human
neutrophil peptide 1-4; LL-37, human cathelicidin; LOS,
lipooligosaccharide; LPS, lipopolysaccharide; LTA, lipoteichoic
acid; mCRAMP, murine cathelicidin-related antimicrobial
peptide; MprF, membrane protein multipeptide resistance
factor; NETs, neutrophil extracellular traps; pEtN,
phosphoethanolamine; PG, phosphatidylglycerol; Sap,
sensitive to antimicrobial peptides ABC importer; SK,
staphylokinase; TA, teichoic acid; TLR, toll-like receptor;
WT, wild-type.

INTRODUCTION
Antimicrobial peptides (AMPs) are small (<10 kDa)
soluble host defense peptides that play an important
role in the mammalian innate immune response, helping
to prevent infection by inhibiting pathogen growth on
skin and mucosal surfaces and subsequent dissemina-
tion to normally sterile sites. These natural antibiotics
are produced by many cell types including epithelial
cells, leukocytes (neutrophils, macrophages, dendritic
cells, and mast cells), platelets, endothelial cells, and
adipocytes in response to tissue damage or infectious
stimuli and are found in body fluids and secretions in-
cluding saliva, urine, sweat, and breast milk. To date,
more than 2,000 AMPs have been identified from a
wide variety of organisms including bacteria, insects,
plants, amphibians, birds, reptiles, and mammals in-
cluding humans (1, 2). Whereas prokaryotic AMPs are
produced as a competitive strategy to facilitate the ac-
quisition of nutrients and promote niche colonization
(3), AMPs produced by higher organisms are generally
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conceived to carry out immune defense functions. In
humans, the principal AMPs are hydrophobic mole-
cules composed of ∼10 to 50 amino acid residues with
a net positive charge, which exhibit varying degrees of
broad-spectrum bioactivity against Gram-positive and
Gram-negative bacteria, fungi, protozoan parasites,
and certain enveloped viruses (4, 5). AMPs may be
expressed constitutively or induced in response to in-
fection (e.g., proinflammatory cytokines, toll-like re-
ceptor [TLR] signaling) (6) and are commonly produced
as propeptides that undergo subsequent proteolytic
processing to the mature bioactive peptide (7). AMPs
with central roles in host defense are active at micro-
molar to nanomolar concentrations and facilitate mi-
crobial killing through perturbation of the cytoplasmic
membrane (8). Several important human pathogens
display significant resistance to AMPs, which appears
to play a key role in their potential to produce serious
invasive infections.

AMPs can be classified into four main groups accord-
ing to their secondary structure: (i) α-helical peptides,
(ii) β-sheet peptides, (iii) loop peptides, and (iv) extended
peptides (1, 9). The two major AMP families in mam-
mals are the cathelicidins and the defensins (Table 1).
In their mature form, cathelicidins are often α-helical
cationic AMPs that do not contain cysteine residues.
LL-37 is the sole human cathelicidin (10). Defensins

are β-sheet-stabilized peptides classified as either α- or
β-defensins according to the pattern formed by three
disulphide bridges. α-defensins are primarily produced
by neutrophils and intestinal Paneth cells, while β-
defensins are expressed by epithelial tissues in the res-
piratory, gastrointestinal, and urinary tracts (11, 12).
Mammalian defensins produced by human epithelial
and immune cells are cysteine-rich peptides ∼30 to 40
amino acid residues in length (13). Humans produce
six α-defensins: HNP 1 to HNP 4 are found in the
azurophilic granules of neutrophil granulocytes (14),
while human α-defensins HD-5 and HD-6 are expressed
in Paneth cells located in the small intestine (15) and
female urogenital tract (16) (Table 1). Six human β-
defensins, HBD-1 through HBD-6, have been identified
and are expressed by epithelial cells, monocytes, mac-
rophages and dendritic cells (11, 17). Cathelicidins are
found in skin cells, gastrointestinal cells, neutrophils,
and myeloid bone marrow cells (18) (Table 1). Acti-
vated platelets produce additional groups of cationic
chemokine-related AMPs called thrombocidins and
kinocidins (19–21).

These prototypical AMPs have a net positive charge
to facilitate interaction with the net negative charge of
bacterial surfaces (22). While cationic peptides comprise
the largest class of AMPs, certain anionic peptides such
as dermcidin, produced by eccrine sweat glands, also

TABLE 1 Human antimicrobial peptides and murine cathelicidin mCRAMPa,b

Class Peptide Gene Species
Producing
cells References Amino acid sequencec

α-defensins HNP-1 DEFA1 Human Azurophilic
granules of
neutrophil
granulocytes

14 AC1YC2RIPAC3IAGERRYGTC2IYQGRLWAFC3C1

HNP-2 DEFA1 Human C1YC2RIPAC3IAGERRYGTC2IYQGRLWAFC3C1

HNP-3 DEFA3 Human DC1YC2RIPAC3IAGERRYGTC2IYQGRLWAFC3C1

HNP-4 DEFA4 Human VC1SC2RLVFC3RRTELRVGNC2LIGGVSFTYC3C1TRV
HD-5 DEFA5 Human Paneth cells in

small intestine
and female
urogenital tract

15, 16 ATC1YC2RTGRC3ATRESLSGVC2EISGRLYRLC3C1R
HD-6 DEFA6 Human AFTC1HC2RRSC3YSTEYSYGTC2TVMGINHRFC3C1L

β-defensins HBD-1 DEFB1 Human Epithelial cells,
monocytes,
macrophages
and dendritic
cells

11, 17 DHYNC1VSSGGQC2LYSAC3PIFTKIQGTC2YRGKAKC1C3K
HBD-2 DEFB4 Human GIGDPVTC1LKSGAIC2HPVFC3PRRYKQIGTC2GLPGTKC1C3KKP
HBD-3 DEFB103 Human GIINTLQKYYC1RVRGGRC2AVLSC3LPKEEQIGKC2STRGRKC1C3RRKK
HBD-4 DEFB104 Human ELDRIC1GYGTARC2RKKC3RSQEYRIGRC2PNTYAC1C3LRK

Cathelicidins LL-37 CAMP Human Skin cells,
gastrointestinal
cells, neutrophils,
and myeloid
bone marrow
cells

18 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES
mCRAMP Cnlp Murine GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ

Others C18G n/a Synthetic n/a 253 ALYKKLLKKLLKSAKKLG

aAbbreviations: HNP, human neutrophil defensin; HD, human α-defensin; HBD, human β-defensin; LL-37, human cathelicidin; mCRAMP, murine cathelicidin-related
peptides; C18G, α-helical peptide derived from the carboxy terminus of platelet factor IV.
bModified from Gruenheid and Moual (229).
cNumbers denote cysteine residues involved in disulfide bonds.
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contribute to host epithelial defense (23). In addition
to charge, other factors influencing the AMP spectrum
and mechanism of action include size, amino acid com-
position, structural conformation, amphipathicity, and
hydrophobicity (24). A primary mechanism of AMP ac-
tion is through electrostatic interaction with the anionic
phospholipid headgroups in the outer bacterial cyto-
plasmic membrane or cell wall components (22, 25).
Upon penetration of the outer membrane or cell wall,
AMP insertion into the cytoplasmic membrane causes
membrane rupture and cell death (11).

Three general modes of AMP action have been pro-
posed to explain the membrane disruption: (i) the
“barrel-stave” mechanism where AMPs directly inte-
grate into the target membrane forming membrane-
spanning pores (26), (ii) the toroidal-pore mechanism
where AMPs form membrane-spanning pores with in-
tercalated lipids inducing a curvature in the membrane
(27), and (iii) the “carpet” mechanism where AMPs at
high concentration accumulate on the cell surface and
dissolve the cell membrane in a detergent-like manner
without forming membrane-spanning pores (28). In
addition to cell membrane perturbation, some AMPs
may exert downstream antimicrobial effects by inhibit-
ing the bacterial DNA, RNA, or protein synthesis ma-
chinery or biosynthesis of cell wall components (29, 30).
Nisin, an AMP commonly used in the food industry
as a preservative, is a member of the bacteriocin or
lantibiotic family of AMPs that inhibits the biosynthesis
of teichoic acid (TA) and lipoteichoic acid (LTA) in
Gram-positive bacteria (31). Another bacteriocin, mer-
sacidin, inhibits cell wall peptidoglycan biosynthesis
and is active against methicillin-resistant Staphylococcus
aureus (32). Some eukaryotic defensins target the lipid II
biosynthesis pathway, an essential component of pep-
tidoglycan, to inhibit cell wall biosynthesis. Several
AMPs inhibit nucleic acid biosynthesis including buforin
II (33), indolicidin (34), and puroindoline (35). Human
neutrophil peptide 1 (HNP-1), also known as human
α-defensin 1, inhibits cell wall, DNA, and protein syn-
thesis (36).

Genetic animal models have established an essential
role for AMPs in the innate immune system. For exam-
ple, mice deficient in the murine cathelicidin (mCRAMP)
suffer more severe necrotic skin lesions than wild-type
(WT) littermates following subcutaneous infection with
Streptococcus pyogenes (group A Streptococcus [GAS]),
a Gram-positive human pathogen (37, 38). GAS is killed
less efficiently by whole blood and mast cells isolated
from mCRAMP knockout mice (37, 38), and Salmo-
nella enterica serovar Typhimurium (S. Typhimurium)

proliferates better within macrophages of mCRAMP
knockout mice (39). Cathelicidin-deficient mice are like-
wise more susceptible to Escherichia coli urinary tract
infection (40), meningococcal septicemia (41), Pseudo-
monas aeruginosa keratitis (42), Klebsiella pneumoniae
lung infection (43), and Helicobacter pylori gastritis,
while mice deficient in β-defensin production show im-
paired defense against P. aeruginosa (44) or Fusarium
solani keratitis (45). In gain-of-function analyses, trans-
genic mice overexpressing porcine cathelicidin were more
resistant to bacterial skin infection (46), while transgenic
expression of the human defensin-5 in mouse Paneth
cells provided enhanced defense against S. Typhimurium
enteritis (47).

Beyond their direct antimicrobial activities, AMPs
including cathelicidins have also been reported to mod-
ulate cytokine production, apoptosis, functional angio-
genesis, or wound repair by stimulating keratinocyte
migration and proliferation (48–50). Serving as an im-
portant link between the innate and adaptive immune
system, AMPs may induce the expression of cytokines
and chemokines (51, 52); exert direct chemotactic
action on neutrophils, macrophages, immature dendritic
cells, mast cells, monocytes, and T lymphocytes (53–
55); and stimulate histamine release from mast cells to
promote neutrophil migration to the site of infection
(56).

The resistance mechanisms employed by commen-
sals or microbial pathogens to combat AMPs have been
intensively studied over the past two decades. This chap-
ter highlights current information on the direct and
indirect mechanisms of action used by human patho-
genic bacteria to counteract AMPs, including surface
charge alteration, external sequestration by secreted or
surface-associated molecules, energy-dependent mem-
brane efflux pumps, peptidase degradation, and the
downregulation of AMP expression by host cells. Per-
turbation of these AMP resistance mechanisms may im-
pair bacterial colonization capacity and reduce virulence
in animal infection models. Understanding the molec-
ular mechanisms of AMP resistance may identify novel
targets for intervention in difficult to treat bacterial
infections.

BACTERIAL AMP RESISTANCE MECHANISMS
Bacterial Surface Charge Modification
Increases AMP Resistance
The cationic nature of human AMPs such as defensins
and cathelicidin LL-37 provides an electrostatic affinity
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for bacterial cell surfaces, which are composed of neg-
atively charged hydroxylated phospholipids including
phosphatidylglycerol (PG), cardiolipin (also known as
diphosphatidylglycerol), and phosphatidylserine (57).
In contrast, mammalian and eukaryotic cell membranes
contain neutral lipids (phosphatidylcholine, phosphati-
dylethanolamine, sphingomyelin) and sterols (choles-
terol, ergosterol) and carry a net neutral charge that
allows selectivity of AMPs for the mostly anionic bac-
terial cell membranes (3, 57). The amphipathic structure
of AMPs resulting from the separation of charged or
polar and hydrophobic moieties within the molecule
enables their integration into the lipid bilayer of Gram-
positive and Gram-negative bacteria, fungi, or viruses
and the formation of destabilizing transmembrane pores
that induce cell rupture and death (58, 59).

While Gram-positive bacteria lack an outer membrane,
AMP access to the cytoplasmic membrane is inhibited
by a thick peptidoglycan-containing cell wall cross-linked
with polymers of TA or LTA. In Gram-negative bacteria,
AMPs must traverse the outer membrane envelope com-
posed of negatively charged lipopolysaccharide (LPS; up
to 70% of the outer membrane) (60) and the periplasmic
space beneath the outer membrane, which contains a
thin peptidoglycan matrix. Surface-associated proteins
and large capsular polysaccharides also hinder AMP ac-
cess to the cytoplasmic membrane.

One common AMP-resistance strategy used by Gram-
positive and Gram-negative bacteria is to increase their
net positive surface charge through modification with
cationic molecules, resulting in the electrostatic repul-
sion of cationic AMPs, thus preventing access to and
disruption of the cytoplasmic membrane (Table 2). Sev-
eral Gram-negative bacteria reduce the net negative
charge of LPS lipid A through the addition of 4-amino-
4-deoxy-L-arabinose (L-Ara4N), phosphoethanolamine
(pEtN), or palmitoyl groups (61). Lipid A is negatively
charged and consists of two glucosamine units with
free phosphate groups linked to four or more acyl
chains (62). Lipid A acylation coordinated by the PhoPQ
regulatory system masks the negative surface charge
in Gram-negative human pathogens such as E. coli,
Salmonella spp., Yersinia enterocolitica, Haemophilus
influenzae,K. pneumoniae, and Legionella pneumophila
(3, 63). Some Gram-positive pathogens alter their sur-
face charge through the modification of TAs composed
of linear anionic glycopolymers of polyglycerol phos-
phate and polyribitol phosphate linked by phospho-
diester bonds. LTAs are noncovalently inserted into the
cell membrane with a glycolipid anchor, while wall TAs
are covalently attached to the peptidoglycan cell wall by

a glycosidic bridge (64, 65). TAs play important roles in
bacterial virulence, the adherence and invasion of host
cells, biofilm formation (65), antimicrobial resistance
(66–68), and activation of the immune response (69,
70). The D-alanylation of TAs by the dlt operon and
integration of L-lysine into PG by membrane protein
multipeptide resistance factor (MprF) are common
strategies employed by Gram-positive bacteria to reduce
the negative surface charge and enhance AMP resistance
(65, 71–73). D-alanylation of TAs is only known to
occur in the bacterial Firmicutes phylum (65).

D-Alanylation of Cell Wall TAs
S. aureus, a major Gram-positive human pathogen, is
the etiologic agent of abscesses, cellulitis, osteomyelitis,
septic arthritis, septicemia, and endocarditis. S. aureus
resists killing by human AMPs through the D-alanylation
of cell wall TA. Incorporation of D-alanyl esters into the
cell wall by the action of four proteins encoded by the
dltABCD operon exposes a positively charged amino
group, reducing the net negative charge of TAs and
diminishing the electrostatic attraction between cationic
AMPs and the bacterial cell envelope (66–68, 72, 74, 75)
(Fig. 1A). D-alanine is activated by D-alanyl carrier pro-
tein ligase (encoded by dltA) and delivered to D-alanine
carrier protein (encoded by dltC) with assistance from
chaperone protein DltD (encoded by dltD). The puta-
tive transmembrane protein DltB (encoded by dltB) is
thought to facilitate transfer of the D-alanyl–D-alanine
carrier protein complex across the cytoplasmic mem-
brane (65). The D-alanylation of TA is also dependent
upon environmental factors such as temperature, pH,
and salt (e.g., NaCl) concentration (76, 77). Transcrip-
tional regulators of TA D-alanylation have been identi-
fied for several species, including Bacillus subtilis (global
transcriptional regulators AbrB and Spo0A) (78), group
B Streptococcus (GBS) (two-component system DltRS)
(79), and S. aureus (global regulators Agr and Rot, two-
component system ArlRS) (20). In a recently proposed
model, the increased density of the peptidoglycan sac-
culus resulting from cell wall D-alanylation may also
sterically hinder AMP access to the cell membrane and
contribute to AMP resistance (80). As a consequence,
the cell wall of a GBS mutant lacking dltA was less
compact and more permeable to AMPs than the WT
parent strain (80). However, additional research is re-
quired to ascertain whether or not this mechanism
applies to other Gram-positive species.

Compared to WT strains, S. aureus dltA null mutants
and dltA, dltB, and dltD mutants of Staphylococcus
xylosus are deficient in D-alanine esters of LTAs are
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hypersensitive to human α-defensins and cathelicidin
due to an increase in negative surface charge and en-
hanced AMP binding (66, 72, 75). Furthermore, the
overexpression of dlt in WT S. aureus enhances AMP
resistance by increasing the cell surface positive charge
(72). An S. aureus dltA mutant has reduced adherence
to artificial surfaces, diminished biofilm formation, and
reduced virulence in murine infection models (75, 81,
82). Several Gram-positive human pathogens have dlt
operons, including GAS (71), GBS (66), Streptococcus
pneumoniae (68), Enterococcus faecalis (67), Listeria
monocytogenes (83), and B. subtilis. Inactivation of dltA
in these and other Gram-positive species enhances sen-
sitivity to human α-defensins and cathelicidin LL-37
(66, 71, 72, 83). Correspondingly, LTA D-alanylation
is required for full virulence in mouse models of GAS
(71), L. monocytogenes (83), and GBS infection (66).
D-alanylation promotes GAS neutrophil intracellular
survival as well as L. monocytogenes in vivo whole
blood survival and in vitro adherence to macrophages,
hepatocytes, and epithelial cells (83). In Lactobacillus,
TA D-alanylation plays an important role in establishing
gastrointestinal tract colonization (84).

Aminoacylation with L-Lysine or L-Alanine
Themultiple peptide resistance factorMprF (also known
as LysS), encoded by the mprF gene, is a highly con-
served ∼97-kDa integral membrane protein found in
both Gram-positive and Gram-negative bacteria. MprF
possesses a conserved C-terminal hydrophilic cyto-
plasmic domain and a large N-terminal flippase do-
main (85) that reduces the net negative surface charge
of Gram-positive bacteria by incorporating L-lysine or
L-alanine into cell wall PG (82, 85, 86). MprF is a lysine-
substituted phosphatidylglycerol synthase that alters
surface charge through the formation of a positively
charged membrane phospholipid (82, 87) (Fig. 1A).
Both the N- and C-terminal domains of MprF are nec-
essary for AMP resistance in S. aureus (85), and mprF
gene expression is controlled by the ApsRSX regulator
(88). An S. aureus mutant strain lacking mprF has an
increase in negative surface charge compared to WT, is
more sensitive to killing by a broad range of bacterial
and mammalian AMPs, including neutrophil defensins
(82), and is less virulent in mouse infection models (75,
81, 82).

Aminoacylation of PG byMprF homologues increases
AMP resistance in multiple bacterial species, including
Clostridium perfringens, E. faecalis, P. aeruginosa, My-
cobacterium tuberculosis, Bacillus anthracis, B. subtilis,
Enterococcus faecium, and L. monocytogenes (89).

C. perfringens, a Gram-positive spore-forming bacte-
rium and common cause of foodborne illness, expresses
two mprF genes designated mprF1 and mprF2, which
encode for alanyl phosphatidylglycerol synthase and
lysylphosphatidylglycerol synthase, respectively (86, 90).
In M. tuberculosis, the addition of positively charged
amino acid L-lysine to PG is encoded by the lysX gene
encoding for MprF homolog LysX and is essential for
resistance to cationic antibiotics and AMPs (91, 92).
Lysinylation of PG has also been described for L. mono-
cytogenes (93), P. aeruginosa (94), and B. anthracis (95).

Additional cell wall modifications in Gram-positive
bacteria have also been reported to influence AMP re-
sistance. In GBS, the ponA gene encodes for penicillin-
binding protein 1a and promotes resistance to human
cathelicidin and defensins (96). The pgm gene, encoding
a phosphoglucomutase, contributes to AMP resistance
in porcine pathogen Bordetella bronchiseptica and
the fish pathogen Streptococcus iniae (97, 98). In My-
cobacterium marinum, mutation of the kasB gene,
encoding beta-ketoacyl-acyl carrier protein synthase B,
reduces growth in human macrophages and bacterial
survival in the presence of human defensins (99).

Modification of LPS with L-Ara4N or pEtN
The outer membrane of Gram-negative bacteria is
composed of lipid A, an anionic dimer of glucosamine
linked to fatty acid chains and flanked by polar phos-
phate groups synthesized on the cytoplasmic surface
of the inner membrane by highly conserved enzymes.
The lipid A moiety has an attached core polysaccharide
and species-specific side-chain “O” polysaccharides
(62). Modification of this complex, known as LPS, with
amine substituents L-Ara4N or pEtN reduces the net
negative surface charge and AMP affinity, thereby pro-
moting AMP resistance in Gram-negative bacteria such
as Salmonella spp., important human pathogens and
the causative agents of enteric/typhoid fever (Fig. 1A).
In S. Typhimurium, two-component regulatory system
PmrAB plays an important role in sensing extracellular
cationic AMPs in vivo, and coordinates the expression
of pmrC to decorate lipid A with ethanolamine and
pmrEHFIJKLM for the attachment of positively charged
L-Ara4N to the 4-phosphate group of the lipid A back-
bone, which together reduce the net negative charge of
lipid A and enhance resistance to cationic AMPs (100,
101). All genes except for pmrM are required for the
addition of L-Ara4N and increased resistance to cationic
AMPs in S. Typhimurium (100). S. Typhimurium lack-
ing the LPS modifying enzyme PmrA are more sensitive
to AMPs and have reduced virulence in a murine model

ASMscience.org/MicrobiolSpectrum 5

Bacterial AMP Resistance Mechanisms

http://www.ASMscience.org/MicrobiolSpectrum


Downloaded from www.asmscience.org by
IP:  137.110.194.106

On: Thu, 28 Jan 2016 19:43:33

TABLE 2 Bacterial antimicrobial peptide resistance mechanismsa,b

AMP resistance
mechanism

AMP resistance
phenotype Genes Target AMPs Bacteriac References

Cell surface
alterations

D-alanylation of
lipoteichoic acid and
teichoic acid in bacterial
cell wall

dlt operon
dltA

Cecropin B, colistin, gallidermin,
HNP1-3, indolicidin, mCRAMP,
magainin II, nisin, polymyxin B’
protegrin 1, 3, and 5, tachyplesin 1
and 3, daptomycin, vancomycin

Staphylococcus aureus
Listeria monocytogenes
Group B Streptococcus
Group A Streptococcus
Streptococcus pneumoniae
Streptococcus suis
Enterococcus faecalis
Bacillus anthracis
Bacillus cereus
Clostridium difficile

66–68, 71, 72,
83, 254–259

Addition of L-lysine
or L-alanine to
phosphatidylglycerol
in cell membrane

mprF
lysC
lysX
PA0920

Arenicin-1, CAP18, gallidermin,
HBD-3, HNP1-3, LL-37, lugworm
beta-sheet peptide, lysozyme,
magainin II, melittin, nisin, NK-2,
polymyxin B, protamine,
protegrin 3 and 5, tachyplesin 1,
vancomycin

S. aureus
B. anthracis
L. monocytogenes
Mycobacterium tuberculosis
Pseudomonas aeruginosa

73, 81, 82, 85,
87, 91, 93–95

Synthesis and extension
of lipooligosaccharide

lpxA
lgtF
galT
cstII

Crp4, Fowl-1, HD-5, LL-37,
polymyxin B

Neisseria meningitidis
Campylobacter jejuni

113–115

waaF
Addition of ethanolamine
(pEtN) to lipid A

lpxEHP

cj0256
pmrC
lptA

LL-37, protegrin 1, polymyxin B Helicobacter pylori
C. jejuni
S. Typhimurium
Neisseria gonorrhoeae
N. meningitidis

101, 108, 110,
111, 260

Addition of aminoarabinose
to lipid A in LPS

pmr genes C18G, HBD-2, polymyxin B,
protegrin 1, synthetic protegrin
analogs

S. Typhimurium
Proteus mirabilis
Pseudomonas aeruginosa
Klebsiella pneumoniae

100, 103,
105, 106

Acylation of lipid A in LPS pagP
rcp
htrB msbB
lpxM

C18G, colistin, CP28, HBD-2,
LL-37, magainin II, mCRAMP,
protegrin 1, PGLa, polymyxin B
and E

Salmonella spp.
Legionella pneumophila
Haemophilus influenzae
Vibrio cholerae
K. pneumoniae

63, 117, 118,
120, 121

Phosphorylcholine in LPS licD LL-37 H. influenzae 119
Synthesis of polysaccharide
capsule

cpssiaD
sia operon
ica genes
cap
hasABC

HBD-1 and 3, HNP-1 and 2,
lactoferrin, polymyxin B,
protamine, mCRAMP,
CRAMP-18, LL-37, protegrin 1,
polymyxin B, β-defensin-1, 2,
and 3

K. pneumoniae
N. meningitidis
Staphylococcus epidermidis
S. pneumoniae
Group A Streptococcus

113, 139–143,
146

PCN-binding protein PBP1a ponA HNP-1, LL-37, mCRAMP Group B Streptococcus 96
Mycolic acid synthesis kasB HNP-1, protamine, lysozyme Mycobacterium marinum 99
Production of carotenoids crtOPQMN HNP-1, thrombin-induced

platelet microbicidal proteins,
polymyxin B

S. aureus 261–263

Binding and
inactivation

Staphylokinase sak HNP-1 and 2 S. aureus 122, 123

M1 surface protein emm1 LL-37 Group A Streptococcus 130
SIC protein sic LL-37, α-defensins, lysozyme Group A Streptococcus 124, 125
Shedding of host
proteoglycans

lasA LL-37, HNP-1 P. aeruginosa
E. faecalis
Group A Streptococcus

136, 264

PilB pilB LL-37, mCRAMP, polymyxin B Group B Streptococcus 132
LciA lciA Lactococcin A Lactococcus lactis 265, 266
LanI lipoproteins lanI Lantibiotics L. lactis

Bacillus subtilis
267–269

Active efflux ATP-dependent
efflux system

mtr genes LL-37, mCRAMP, PC-8, TP-1,
protegrin-1 (PG1)

Neisseria gonorrhoeae
N. meningitidis

111, 168,
170, 270

(continued)
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of enteric infection (100, 102). L-Ara4N modification of
LPS enhances AMP resistance of several Gram-negative
species including Proteus mirabilis, responsible for uri-
nary tract infections (103), Yersinia pseudotuberculosis,
a causative agent of enterocolitis (104), K. pneumoniae,
a human lung pathogen (105), and P. aeruginosa (106),
associated with chronic airway infections in cystic fi-
brosis patients (107).

In the Gram-negative pathogenH. pylori, an etiologic
agent of peptic ulcers and increased gastrointestinal
cancer risk, the addition of pEtN to dephosphorylated
lipid A of LPS increases AMP resistance and reduces
TLR4-mediated activation of the innate immune system
(108, 109). Mutation of the H. pylori lpxEHP genes
disrupted direct attachment of pEtN to the disaccharide
backbone of lipid A, increased the net negative charge

of LPS, and concomitantly reduced the MIC of poly-
myxin B, a bacterial-derived AMP, by 25-fold compared
to WT (108). In Neisseria gonorrhoeae, the lptA gene
catalyzes addition of pEtN to lipid A and is necessary
for polymyxin B resistance and survival in humans
(110). Similarly, mutagenesis of lptA inNeisseria menin-
gitidis decreased resistance to polymyxin B, protegrin-1,
and LL-37 (111). Deletion of the lpxA gene encoding
an enzyme in the lipid A biosynthesis pathway of N.
meningitidis abolishes lipooligosaccharide (LOS) pro-
duction and increases sensitivity to cationic AMPs (112,
113). Similarly, mutation of waaF, cstII, galT, or lgtF
genes in Campylobacter jejuni results in LOS trunca-
tion and hypersensitivity to AMPs including polymyxin
B, human α-defensin-5 (HD-5), and the murine HD-5
homologue Crp4 (114, 115).

TABLE 2 Bacterial antimicrobial peptide resistance mechanismsa,b (continued)

AMP resistance
mechanism

AMP resistance
phenotype Genes Target AMPs Bacteriac References
K+-linked efflux pump sap Protamine S. Typhimurium 167
Plasmid-encoded
efflux pump

qacA Rabbit thrombin-induced
platelet microbicidal protein

S. aureus 177

VraFG ABC transporter vraFG Nisin, colistin, bacitracin,
vancomycin, indolicidin,
LL-37, hBD3

S. aureus
S. epidermidis

155, 271–274

Proteolytic
degradation

Elastase lasB LL-37 P. aeruginosa 181

Gelatinase gelE LL-37 E. faecalis 181, 275
Metalloproteinase zapA

aur
degP

LL-37, lactoferricin P. mirabilis
S. aureus
Escherichia coli

181, 183,
184, 192

Cysteine protease speB
ideS

LL-37 Group A Streptococcus 181, 182

Surface protease pgtE C18G S. Typhimurium 188
Gingipains (serine
proteases)

rgpA/B Cecropin B Porphyromonas gingivalis 193

Aureolysin aur LL-37 S. aureus 183, 276
V8 protease sspA LL-37 S. aureus 183
SepA protease sepA Dermcidin S. epidermidis 277, 278

Alteration of
host processes

Downregulate AMP
transcription

mxiE LL-37, human beta-defensin-1,
human beta-defensin HBD-3

Shigella dysenteriae
Shigella flexneri
S. Typhimurium
Neisseria gonorrhoeae

225, 226,
279, 280

Stimulation of host cysteine
proteases and cathepsins

Unknown HBD-2, HBD-3 P. aeruginosa 227, 281

Regulatory
networks

Two-component regulator phoP/phoQ Defensins, protamine S. Typhimurium
P. aeruginosa

200, 205

Two-component regulator pmrA/pmrB Defensins, polymyxin B S. Typhimurium
P. aeruginosa

100, 206

Thermoregulated
transcription factor

prfA Defensins L. monocytogenes 224

aAbbreviations: C18G, α-helical peptide derived from the carboxy terminus of platelet factor IV; CAP18, cationic LPS-binding protein 18 from rabbit; CP28, α-helical
synthetic cationic peptide based on the cecropin-melittin hybrid peptide CEME; mCRAMP and CRAMP-18, murine cathelicidin-related peptides; Crp4, murine homol-
ogous to human α-defensin-5; Fowl-1, heterophil-derived cathelicidin homolog fowlicidin-1; HBD, human β-defensin; HD-5, human α-defensin-5; HNP, human neutrophil
defensin; LL-37, human cathelicidin, C-terminal part of the human cationic antimicrobial protein (hCAP-18); NK-2, α-helical fragment of mammalian NK-lysin; PGLa,
peptide starting with a glycine and ending with a leucine amide from magainin peptide family.
bModified from Anaya-Lopez et al. (3).
cNot all bacteria are resistant to the CAMP indicated; please see reference for specific resistance profile.
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FIGURE 1 Schematic representation of the multiple resistance mechanisms developed by bacteria to overcome host anti-
microbial peptides. (A) Modification of the bacterial outer membrane. Bacterial resistance to cationic antimicrobial peptides
is mediated by alterations in surface charge. Gram-positive bacteria: D-alanine modification of cell wall teichoic acid (dlt),
L-lysine (mprf), or L-alanine modification of phosphatidylglycerol (mprf). Gram-negative bacteria: aminoarabinose or acylation
modifications of lipid A in LPS (pmr, pagP), or addition of ethanolamine to lipid A (pmrC, lptA). The increased positive charge
on bacterial surface repels cationic AMPs. (B) Shielding of the bacterial surface through the trapping and inactivation of AMPs
in the extracellular milieu enhances resistance and pathogenicity. Surface-associated capsule traps AMP (e.g., K. pneumoniae
cps operon), surface protein binds AMP (e.g., GAS M1 protein, GBS PilB pilus protein), secreted protein binds AMP (e.g., GAS SIC
protein or S. aureus staphylokinase), or bacterial proteases release host proteoglycans to block AMP (e.g., P. aeruginosa LasA).
(C) Membrane efflux pumps function by translocating the AMP out of the cell (e.g., Neisseria spp. Mtr, S. Typhimurium Sap,
S. aureus QacA, and Staphylococcus spp. VraFG). (D) Degradation and inactivation of AMPs by bacterial proteases (e.g., GAS
streptococcal pyrogenic exotoxin B protease, S. epidermidis SepA, S. Typhimurium PgtE, S. aureus aureolysin and V8 protease,
P. aeruginosa elastase, and E. faecalis gelatinase). (E) Bacterial exposure to AMPs upregulates the expression of AMP-resistance
genes through global gene regulatory networks (e.g., S. Typhimurium and P. aeruginosa PhoPQ and PmrAB). (F) Alteration of host
processes by bacteria, including the downregulation of host AMP production (e.g., Shigella spp. transcriptional factor MxiE) or the
upregulation and activation of host AMP-degrading proteases (e.g., P. aeruginosa). Abbreviations: om, bacterial outer membrane;
im, bacterial inner membrane.
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Acylation and Phosphorylcholination of LPS
The pagP gene encoding acetyltransferase PagP in the
outer membrane of S. Typhimurium acylates lipid
A and increases AMP (C18G, pGLa, and protegrin-1)
resistance by reducing outer membrane permeability
(63, 116) (Fig. 1A). Inactivation of the pagP homologue
rcp in the respiratory tract pathogen L. pneumophila
reduces growth rate, AMP resistance, intracellular sur-
vival, and mouse lung colonization (117). LOS acylation
by the H. influenzae htrB gene product is required for
resistance to human AMP β-defensin 2 (HBD-2) (118).
Addition of phosphorylcholine to the oligosaccharide
portion of LPS promotes H. influenzae resistance to
human cathelicidin LL-37 (119), conceivably through
the cell surface exposure of the positively charged qua-
ternary amine on choline to promote electrostatic re-
pulsion (Fig. 1A). Inactivation of the lpxM gene in
K. pneumoniae, which encodes an enzyme necessary
for secondary acylation of immature lipid A, increases
sensitivity to α-helical cationic AMPs through enhanced
outer membrane permeability (120). In pathogenic
Vibrio cholerae strain El Tor, the msbB gene is required
for full acylation of the lipid A moiety and resistance to
cationic AMPs (121).

Trapping of AMPs by Surface Molecules
Proteins and polysaccharides associated with the bac-
terial surface or secreted into the extracellular milieu
may directly bind AMPs (Fig. 1B), thereby blocking
access to the cytoplasmic membrane target of action
and the formation of lytic pores. Another indirect AMP
neutralization strategy employed by bacterial pathogens
involves the release of the bound AMP from the bacterial
surface (Table 2).

Surface-Associated Proteins,
Secreted Proteins, and Polysaccharides
Plasminogen is the inactive form of plasmin, a host ser-
ine protease involved in the degradation of blood clots
and tissue remodeling. S. aureus secretes a plasminogen-
activating protein known as staphylokinase (SK). The
accumulation of active plasmin activity on the S. aureus
cell surface promotes host tissue invasion and disse-
mination to normally sterile sites (122). SK binds and
inactivates mCRAMP and α-defensins released from
human neutrophils including HNP 1-3 (122, 123)
(Fig. 1B), reducing AMP activity against S. aureus by
more than 80%. Further, S. aureus strains expressing
SK are more resistant to killing by α-defensins in a
mouse model of arthritis, and the addition of puri-
fied SK to SK-deficient strains enhanced survival in the

presence of α-defensin in vitro (123). The secreted hy-
drophilic GAS protein streptococcal inhibitor of com-
plement (SIC) binds and inactivates human LL-37,
α-defensin, and lysozyme to promote bacterial survival
(Fig. 1B) (124–126). A sic knockout mutant in the highly
invasive M1T1 GAS genetic background was more sen-
sitive to killing by AMPs and shows diminished viru-
lence in animal infection models (124, 125).

TheM protein of GAS, encoded by the emm gene, is a
major cell wall–anchored coiled-coil protein required
for resistance to opsonophagocytosis, adherence to host
cells, and full virulence in animal models of GAS infec-
tion (127). The C-terminal region of M protein is highly
conserved and contains the canonical LPXTG cell wall
anchor motif. GAS is classified into emm types accord-
ing to the nucleotide sequence of the hypervariable
N-terminal region. Currently, there are more than 200
known GAS serotypes, and the M1 GAS serotype is the
most frequently isolated serotype from invasive GAS
infections worldwide (128, 129). Mutation of the emm1
gene, encoding M1 protein, significantly increased the
sensitivity to LL-37 or mCRAMP compared to WT
(130), while the heterologous expression of M1 protein
in serotype M49 GAS or Lactococcus lactis enhanced
LL-37 resistance. The trapping of LL-37 through the
hypervariable extracellular N-terminal domain of M
protein impedes LL-37 access to the cell membrane and
promotes bacterial survival in LL-37-containing neu-
trophil extracellular traps (NETs) (Fig. 1B) (130). In
GBS, surface-associated penicillin-binding protein-1a
and the PilB surface pilus protein promotes adherence to
host cells and resistance to cathelicidin AMPs through
surface sequestration of LL-37 and mCRAMP in vitro
(131, 132). Inactivation of pilB in GBS also reduces
virulence in a mouse infection model (132).

Serological classification of streptococci in groups is
based upon expression of unique carbohydrate antigens
in the bacterial cell wall (133) known to play a structural
role in cell wall biogenesis (134). Approximately 50%
of the GAS cell wall by weight is made up of a single
polysaccharide molecule termed the group A carbohy-
drate (GAC) antigen. All strains of GAS express GAC,
which is composed of a polyrhamnose core with an
immunodominant N-acetylglucosamine (GlcNAc) side
chain (134). Inactivation of the gacI gene, encoding for a
glycosyltransferase, abolished expression of the GlcNAc
side chain in serotype M1 GAS. The gacI mutant was
more susceptible to killing within NETs and to human
cathelicidin LL-37, a component of neutrophil-specific
granules important for intracellular killing and de-
ployed within NETs (135). Similarly, the gacI mutant
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had reduced growth in human serum and was hyper-
sensitive to killing by the antimicrobial releasate from
thrombin-activated human platelets. Loss of the GlcNAc
epitope on GAC attenuated GAS virulence in a rabbit
model of pulmonary infection and a mouse model of
systemic infection (135). In studies with purifiedWT and
mutant GAC, the GlcNAc side chain was shown to im-
pede LL-37 interaction with the underlying polyrham-
nose core (135).

The active shedding of negatively charged surface
exposed proteoglycans on host epithelial cells by pro-
teases from bacterial pathogens is another resistance
mechanism to trap and inactivate AMPs in tissues
(Fig. 1B). Proteases secreted by GAS, E. faecalis, and
P. aeruginosa degrade decorin and release dermatan
sulfate, which can bind and inactivate human α defensin
HNP-1 (136). Syndecan-1, a proteoglycan derived from
the degradation of heparan sulfate, is released from the
host cell surface by P. aeruginosa virulence factor LasA
to bind and impede AMP function (137). S. epidermidis
synthesizes polysaccharide intercellular adhesin, a posi-
tively charged extracellular matrix polymer encoded by
the ica gene locus (icaADBC) and the cap gene (138), to
enhance electrostatic repulsion and resistance to cationic
AMPs LL-37 and human β-defensin-3 (HBD-3) (139–
141).

Capsular Polysaccharides
Several bacterial pathogens express surface capsules
composed of high molecular mass polysaccharides that
promote in vivo survival and trap cationic AMPs to
impede interactions with the microbial cell surface
(Fig. 1B). The hyaluronan capsule of GAS promotes
survival in NETs through enhanced resistance to LL-37
(142). In K. pneumoniae, the cps capsule biosynthesis
operon is transcriptionally upregulated in the presence
of AMPs to enhance resistance to polymyxin B, prot-
amine sulfate, defensin-1, β-defensin-1, and lactoferrin
(143). The capsule of K. pneumoniae prevents engage-
ment of TLR 2 and 4 and subsequent activation of the
nuclear factor-κB and MAPK pathways to inhibit the
expression of human β-defensins (144). Administration
of capsular polysaccharide extracts from S. pneumoniae
serotype 3 and P. aeruginosa enhanced the resistance of
nonencapsulated K. pneumoniae to α-defensin HNP-1
and polymyxin B, suggesting that the release of capsule
from the bacterial surface promotes the trapping of
AMPs to prevent access to the site of action (145).
Further, polymyxin B and HNP-1 also stimulate the
release of capsule from the S. pneumoniae cell surface
to sequester AMPs and increase AMP resistance (145).

Studies of encapsulated WT and nonencapsulated sero-
type B mutant N. meningitidis demonstrate that capsule
promotes resistance to protegrins, α- and β-defensins,
polymyxin B, and cathelicidins LL-37 and mCRAMP
(146). Moreover, the release of capsule from the surface
of N. meningitidis is reported to promote resistance
to LL-37 (113), and sublethal concentrations of AMP
induce capsule biosynthesis (113, 146). Other bacterial
species shield AMP targets with surface polymers. For
example, LOS expression in C. jejuni increases LL-37,
α-defensins, and polymyxin B resistance (114). P. aeru-
ginosa biofilms produce alginate polysaccharide, a
polymer of β-D-mannuronate and α-L-guluronate, to se-
quester and induce AMP conformational changes and
peptide aggregation to prevent AMP access to the cell
membrane (147).

Efflux Systems for AMP Resistance
Well studied for their prominent role in resist-
ance to pharmaceutical antibiotics, certain adenosine
triphosphate–binding cassette (ABC)–driven efflux pumps
are used by human bacterial pathogens to resist AMPs
through the extrusion of AMPs from the cell membrane
site of action to the extracellular environment (148)
(Fig. 1C). Three major classes of ABC transporter systems
play a role in AMP resistance: (i) three-component ABC-
transporters, (ii) two-component ABC-transporters, and
(iii) single-protein multidrug-resistance transporters (149).
Several three-component ABC transporters implicated
in AMP resistance have been described in Gram-positive
species, including NisFEG (L. lactis) (150), SpaFEG
(B. subtilis) (151), and CprABC (Clostridium difficile)
(152, 153) (Table 2). Common two-component systems
involved in AMP resistance include the BceAB trans-
porter system identified in B. subtilis (154), S. aureus
(155), L. lactis (156), S. pneumoniae (157), and L. mono-
cytogenes (158) and the BcrAB(C) transporter identified
in some species of Bacillus (159), Enterococcus (160),
Clostridium (161), and Streptococcus (162). The energy-
driven efflux pumps RosA/RosB and AcrAB are re-
quired for polymyxin B resistance in Y. enterocolitica
and K. pneumoniae, respectively (163, 164). In Y. entero-
colitica, RosA and RosB upregulate the ros locus and
are necessary and sufficient for resistance to cationic
AMPs. In K. pneumoniae, AacrAB also enhances resis-
tance to α- and β-defensins (164). The MefE/Mel efflux
pump contributes to LL-37 resistance in S. pneumoniae
(165), while the TrkA and SapG potassium transport pro-
teins in Vibrio vulnificus and S. Typhimurium, respec-
tively, are essential for cationic AMP resistance (166,
167).
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The energy-dependent MtrCDE efflux pump is a
member of the resistance-nodulation-division efflux
family. In the pathogens N. gonorrhoeae and N. menin-
gitidis, MtrCDE is involved in actively transporting
AMPs out of the bacterial cytoplasm and periplasmic
space to promote resistance to LL-37, mCRAMP,
PC-8, tachyplesin-1, and protegrin-1 (61, 111, 168).
In addition, the Mtr efflux pump increases resistance to
β-lactam andmacrolide antibiotics and in vivo resistance
to innate immune clearance (61, 168, 169). MtrCDE is
necessary for N. gonorrhoeae colonization in a mouse
model of genital tract infection (170), and inactivation of
mtrC in Haemophilus ducreyi induces hypersensitivity
to β-defensins and human LL-37 (171). The sapABCDF
operon encoding ABC importer Sap (sensitive to anti-
microbial peptides) in S. Typhimurium enhances resis-
tance to protamine, bee-derived AMP melittin, and
crude extracts from human neutrophil granule extracts
(167, 172, 173). The Sap transporter also contributes
to AMP resistance in other Gram-negative species,
including H. influenzae (172) and H. ducreyi (174).
Deletion of the S. Typhimurium yejF gene from the
yejABEF operon encoding an ABC-type peptide import
system, reduced resistance to polymyxin B, melittin,
protamine, and human β-defensins 1 and 2 (175). In
S. aureus, single-protein efflux pump QacA, encoded on
naturally occurring plasmid pSK1, belongs to the major
facilitator superfamily of transport proteins and uses
proton motive force to extrude substrates (176). QacA
promotes resistance to rabbit platelet AMP and host-
derived thrombin-induced platelet microbicidal pro-
tein (177) and may also induce secondary changes in
membrane fluidity to promote AMP resistance (178).
Increased resistance to thrombin-induced platelet micro-
bicidal protein in S. aureus is correlated with in vivo
survival in animal infection models and endocarditis in
humans (177, 179).

Inactivation of AMPs by
Proteolytic Degradation
AMPs are relatively resistant to proteolytic degradation
by surface-associated or secreted proteases produced
by bacterial pathogens (180). However, some bacte-
rial proteases with broad substrate specificity promote
disease pathogenesis by efficiently cleaving and in-
activating AMPs (Fig. 1D). The human AMP LL-37 is
cleaved into nonfunctional breakdown products by
proteases expressed by several human pathogens in-
cluding E. faecalis (metallopeptidase gelatinase) (181),
GAS (broad-spectrum cysteine protease streptococcal
pyrogenic exotoxin B) (182), S. aureus (aureolysin)

(183), and P. mirabilis (50-kDa metalloprotease) (184).
Aureolysin inactivates LL-37 by cleaving the C-terminal
peptide bonds between the Arg19-Ile20, Arg23-Ile24, and
Leu31-Val32 (183) and promotes survival within the LL-
37-rich environment of macrophage phagolysosomes
(185). The GAS protease inhibitor α2-macroglobulin
binds broad-spectrum cysteine protease streptococcal
pyrogenic exotoxin B (SpeB) to the cell surface with the
help of surface-associated G-related α2-macroglobulin-
binding protein to facilitate LL-37 cleavage and bacterial
survival (186, 187). The metalloprotease ZapA, a major
virulence factor of P. mirabilis that degrades antibodies,
extracellular matrix molecules, and complement com-
ponents C1q and C3, also contributes to AMP resistance
by cleaving human β-defensin 1, LL-37, and protegrin-1
(184). The elastase of P. aeruginosa completely degrades
and inactivates LL-37, promoting survival in an ex vivo
wound fluid model (181). The S. Typhimurium pgtE gene
that encodes for outer membrane protease PgtE, enhances
resistance to LL-37 and C18G, an α-helical cationic AMP
(188). Plasminogen-activating streptokinase secreted by
GAS results in the accumulation of cell surface plasmin
activity capable of degrading LL-37 (189). In Burk-
holderia cenocepacia, ZmpA and ZmpB zinc-dependent
metalloproteases cleave and inactivate AMPs LL-37 and
β-defensin 1, respectively (190). High-level expression of
outer membrane protease OmpT of enterohemorrhagic
E. coli promotes AMP resistance through the efficient
degradation of LL-37 at dibasic sites (191). Proteases
secreted by other pathogens also efficiently cleave and
inactivate AMPs, including B. anthracis (LL-37), Por-
phyromonas gingivalis (α- and β-defensins, cecropin B),
and Prevotella spp. (brevinin) (192–196) (Table 2).

Regulatory Networks and AMP Resistance
Bacterial pathogens use two-component regulatory
systems to modulate gene expression in response to ex-
tracellular metal ion concentrations, metabolic require-
ments, growth phase or to subvert the host innate
immune response mounted by neutrophils or macro-
phages within host tissue, resulting in the up- or down-
regulation of genes necessary for survival and disease
progression. Several pathogens achieve maximal resis-
tance to AMPs through the coordinated transcriptional
upregulation of AMP resistance factors (Fig. 1E). PhoPQ
is a well-studied two-component system in S. Typhi-
murium that responds to changes in magnesium ion
(Mg2+) concentration, pH, and the presence of cationic
AMPs (20, 197) (Table 2). Sensor kinase PhoP directly
or indirectly coordinates the expression of >100 genes
in S. Typhimurium that encode for proteins involved
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in Mg2+ transport (MgtA and MgtCB), transcriptional
regulators important for intracellular macrophage sur-
vival (SlyA), oxidative stress resistance (RpoS), LPS
modification by amino arabinose (PmrAB), and lipid A
acylation (PagP) to reduce the fluidity and permeability
of the bacterial membrane and enhance AMP resistance
(20, 188, 198). Consequently, PhoPQ plays a role in
modifying LPS surface charge (63) and in enhancing
macrophage resistance through the upregulation of the
AMP-degrading outer membrane protease PgtE (188,
199–201) and is required for full virulence in a mouse
model of gastrointestinal infection (167). Additional
S. Typhimurium transcriptional factors associated with
resistance to bacterially derived AMP polymyxin B in-
clude virK, somA, and rcsC (202). PhoPQ homologs
have been identified in other Gram-negative patho-
gens, including Yersinia pestis, Shigella flexneri, and
P. aeruginosa (203). Mutant strains of Y. pestis deficient
in PhoPQ are more sensitive to AMPs and neutrophil
intracellular killing (204). In P. aeruginosa, the presence
of AMPs or divalent cations activates the PhoPQ and
PmrAB systems to enhance resistance to cationic AMPs
such as LL-37 and polymyxin B (205–207). The two-
component system PmrAB in P. aeruginosa coordinates
the incorporation of positively charged L-Ara4N sub-
units into LPS and promotes AMP resistance through
electrostatic repulsion (106, 206).

Upon encountering bacteria at the site of infection,
NETs are released to help trap and kill the bacteria.
NETs are composed of DNA backbone and antimicro-
bial effectors such as histones, granule proteases and
AMPs (in particular, cathelicidin) that promote microbe
killing (208, 209). Degradation of the DNA scaffold by
secreted bacterial DNAses promotes NET escape and
survival for several bacterial pathogens including GAS
(210–212), S. pneumoniae (213), GBS (214), and
S. aureus (215). Subinhibitory concentrations of exo-
genous DNA promote P. aeruginosa AMP resistance
through the chelation of divalent cations and the re-
sultant upregulation of AMP resistance genes (216). In
S. Typhimurium, extracellular DNA also induces pmr
expression and AMP resistance (217).

The D-alanylation of teichoic acid by the dlt operon
is regulated by the agr locus in S. aureus and promotes
AMP resistance (282). Exposure of S. aureus to AMPs
activates the VraSR and VraDE operons involved in
resistance to AMPs and cell wall-targeting antibiotics
such as bacitracin (28). Human β-defensin (HBD-3)
triggers the upregulation of the cell wall stress response
pathway in S. aureus to counteract HBD-3-induced
perturbation of peptidoglycan synthesis (13). Exposure

of S. aureus to sublethal concentrations of magainin 2
and gramicidin D promotes resistance to these AMPs
through the enhancement of membrane rigidity (218).
Changes in membrane fluidity induced by incorporation
of longer-chain unsaturated fatty acids into the lipid
bilayer (resulting in increased membrane fluidity) or
carotenoid staphyloxanthin pigment (resulting in in-
creased membrane rigidity) promotes S. aureus resis-
tance to platelet-derived AMPs (tPMPs) or polymyxin
B and human neutrophil defensin 1, respectively (219,
220). While the precise resistance mechanism has yet
to be determined, a significant increase or reduction in
membrane fluidity may hinder AMP insertion into the
cellular membrane (89, 221). In L. monocytogenes, an
increase in the concentration of membrane saturated
fatty acids and phosphatidylethanolamine, and a de-
crease in phosphatidylglycerol concentration, reduces
the fluidity of the cell membrane to promote nisin re-
sistance (222, 223). PrfA, a temperature-regulated tran-
scription factor in L. monocytogenes, contributes to
defensin resistance (224).

Modulation of Host AMP Production
by Bacterial Pathogens
While low levels of AMPs are produced by epithelial
and host immune cells at baseline, AMP expression is
typically dramatically upregulated in response to bac-
terial infection. Some bacterial pathogens resist AMP-
mediated innate immune clearance by interfering with,
or suppressing, host AMP expression levels (Fig. 1F).
Shigella spp. are Gram-negative rods capable of causing
life-threatening invasive human infections such as ba-
cillary dysentery. Shigella dysenteriae and S. flexneri
downregulate the expression of LL-37 and β-defensin-
1 in intestinal epithelial cells during early infection
through a mechanism dependent on transcriptional fac-
tor MxiE and the type III secretion system to promote
bacterial survival, colonization, and invasion of the gas-
trointestinal tract (225, 226) (Table 2). P. aeruginosa,
a human pathogen commonly isolated from the lungs
of cystic fibrosis patients, induces the expression of
the host cysteine proteases cathepsins B, L, and S to
cleave and inactivate β-defensins 2 and 3 and thwart
AMP-mediated clearance of the bacteria in airway
fluid (227). Enterotoxigenic E. coli and V. cholerae
exotoxins reportedly repress the expression of host
cell HBD-1 and LL-37 (228), while N. gonorrhoeae
downregulates the expression of AMP genes (229).
Burkholderia spp. are human pathogens associated
with opportunistic infections in cystic fibrosis patients
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and chronic granulomatous disease (230). The high-level
AMP resistance exhibited by this genus has been at-
tributed to the constitutive incorporation of L-Ara4N
into the LPS molecule (230, 231). Alternative sigma
factor RpoE coordinates Burkholderia gene expression
under stress conditions and contributes to AMP resis-
tance in a temperature-dependent manner (230, 232).

CONCLUDING REMARKS AND
FUTURE DIRECTIONS
AMPs are present in most organisms and are an ancient
and diverse group of naturally occurring anti-infective
molecules that play an integral part in the host innate
immune defense against bacterial infection. Bacterial
AMP resistance mechanisms have evolved as a result
of selection pressures from direct competition among
species (bacteriocins) and during host-pathogen inter-
actions (innate defense AMPs). Human bacterial path-
ogens have evolved a broad diversity of intrinsic or
inducible AMP-defense mechanisms to promote sur-
vival, colonization, and subsequent dissemination to
normally sterile sites within the body to cause life-
threatening invasive syndromes. Bacterial pathogens
with intrinsic high-level resistance to AMPs, such as
S. aureus and Salmonella spp. can bypass normally effec-
tive mucosal defenses and are consequently among the
leading causes of deep tissue and systemic infections.
AMP resistance is mediated by a variety of molecular
mechanisms including net cell surface charge alteration,
efflux, restricting AMP access to their targets, and pro-
teolytic cleavage of AMPs. Bacterial mutants sensitive
to AMPs in in vitro assays are attenuated for virulence
in systemic animal infection models. An improved com-
prehension of AMP modes of action, resistance mecha-
nisms and host pathogen interactions may inspire the
development of alternative antibacterial therapeutics that
target the cell wall, efflux pumps, or AMP-inactivating
proteases, ultimately enhancing bacterial sensitivity to
the AMPs of the host innate immune system. Under-
standing the interaction between conventional anti-
biotics and endogenous AMPs can also lead to improved
therapeutic strategies for drug-resistant pathogens. The
action of beta-lactam antibiotics to sensitize methicillin-
resistant S. aureus and vancomycin-resistant Enterococ-
cus spp. to killing by human cathelicidin LL-37 and
cationic peptide antibiotic daptomycin has shown prom-
ise in synergy studies and small clinical series in patients
with previously recalcitrant infections (233, 234).

The emergence of antibiotic-resistant microbes through
the excessive and inappropriate use of conventional

antibiotics is a critical public health threat responsible
for high morbidity rates and significant socioeconomic
costs worldwide. Moreover, the antibiotic development
pipelines of the major pharmaceutical companies have
steadily declined over the past 20 years. Consequently,
there is considerable interest in alternative therapeutic
approaches to facilitate the fight against multidrug-
resistant pathogens, including the development of novel
broad-spectrum AMPs against bacteria, fungi, protozoa,
and enveloped viruses (30, 235). Importantly, the AMP
mechanism of action is very rapid at concentrations close
to the MIC, in comparison to conventional antibiotics
(236). In recent years, intensive research has led to
the establishment of several bioinformatics tools and
databases (e.g., APD2, cathelicidin antimicrobial pep-
tide, iAMP-2L) to identify and isolate new AMP classes
and to elucidate their structure, function, and biological
activity (237). However, prolonged in vitro exposure
of bacteria to sublethal AMP concentrations (238), and
preclinical trials with naturally occurring cationic AMPs
have detected resistant strains, indicating that optimiza-
tion of AMP composition and structures are required
to enhance stability and efficacy (237). Cross-resistance
to AMPs with disparate modes of action has also been
reported. For example, S. aureus is resistant to pexiganan
and cross-resistant to HNP-1 (239). S. aureus isolates
resistant to daptomycin, a cyclic lipopeptide antibiotic
that associates with Ca2+ to form a cationic complex
(240), are also more resistant host defense AMPs with
diverse mechanisms of action, including HNP-1, poly-
myxin B, and tPMPs (241). Human pathogens resistant
to nisin, an AMP used as a food preservative (L. mono-
cytogenes, Streptococcus bovis) (242, 243), and colistin,
also known as polymyxin E (Acinetobacter baumannii,
P. aeruginosa, Brevundimonas diminuta, Ochrobactrum
anthropi, K. pneumoniae) (244, 245) have recently been
reported.

The transfer of broad-spectrum resistance mecha-
nisms between bacteria and the development of resis-
tance against our own host defense peptides remain
valid concerns moving forward with the development
of AMPs for clinical use (246, 247). Systemic toxicity
and decreased blood and/or serum activity of natural
peptides have significantly hampered clinical AMP de-
velopment and provided the impetus for de novo–
designed peptide sequences (1). To this end, multiple
new classes of AMPs have been reported (e.g., mimetic
peptides, hybrid peptides, peptide congeners, stabilized
AMPs, peptide conjugates, immobilized peptides) with
potential applications in medicine, veterinary medicine,
and agriculture (248). Rationally designed synthetic
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AMPs have recently been demonstrated to be active
against antibiotic-resistant A. baumannii and K. pneu-
moniae (249). Synthetic peptides could also be designed
to resist bacterial and host proteases through the in-
corporation of D-amino acids (229). While pathogenic
bacteria have successfully evolved AMP-resistance me-
chanisms, resistance to a broad range of AMPs has
not yet occurred. Enhanced microbicidal activity of
phagocytic cells and enhanced resistance to bacterial
infection in vivo has been achieved by genetic or phar-
macological augmentation of transcriptional regulator
hypoxia-inducible factor (250, 251), which regulates
the expression of human and murine cathelicidin at
the transcriptional level (250, 252). Combination ther-
apy with AMPs and classical antibiotics that target
more than one site of action, such as the inhibition
of cell wall synthesis coupled with cell membrane dis-
ruption, may help to combat the increasing emergence
of multidrug-resistant microbes associated with chal-
lenging and deadly microbial infections.
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