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REVIEW ARTICLE

The intricate pathogenicity of Group A Streptococcus: A comprehensive update
Helena Bergsten a,b and Victor Nizet a,c

aDivision of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La 
Jolla, CA, USA; bDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden; cSkaggs School 
of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA

ABSTRACT
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and 
soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and 
interactions with neuronal systems. GAS promotes severe inflammation through mechanisms invol-
ving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly 
induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood 
through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell 
membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from 
neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS 
also employs molecular mimicry to traverse connective tissues undetected and exploits the host’s 
fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions 
after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular 
survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses 
mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities 
have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to 
its virulence factors correlate with more severe disease, whereas recurrent infections often show 
diminished immune reactions. This review focuses on the multifaceted virulence of GAS and intro-
duces novel concepts in understanding its pathogenicity.
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Introduction

Group A Streptococcus (GAS, S. pyogenes) is frequently carried 
asymptomatically by school-aged children. It ranks among the 
top ten causes of infectious disease mortality worldwide [1], 
exerting a particularly severe impact in developing countries 
[2]. In wealthier regions, GAS remains a significant health 
concern due to its capacity to cause a large volume of mild 
diseases and occasional acute, life-threatening infections in 
otherwise healthy individuals. Although over a century of 
research on GAS has elucidated numerous specific virulence 
factors, it has yet to yield an approved vaccine. While the 
fundamental clinical features and disease mechanisms of 
GAS have been extensively reviewed [3,4]; this contribution 
will focus primarily on recent advancements in understanding 
the pathogenesis of acute, invasive GAS infections.

Clinical features

Most children and adults are familiar with strep throat 
or GAS pharyngotonsillitis, which typically presents as 
a mild and self-limiting infection that often resolves on 

its own [5,6]. Similarly, the superficial skin infection 
impetigo – caused by GAS, Staphylococcus aureus (S. 
aureus), or both – shares these characteristics. 
Antibiotic therapy for strep throat is recommended to 
reduce complications and contagiousness, though it 
only shortens symptoms by around 16 hours [7].

In many parts of the developing world, recurrent 
episodes of strep throat significantly increase the risk 
of acute rheumatic fever (ARF) [8], a condition closely 
linked to poverty, overcrowded living conditions, and 
the lack of antibiotic treatment due to insufficient 
healthcare infrastructure [9]. ARF generally follows 
strep throat but perhaps also GAS skin infections 
[10]. Indigenous populations often bear 
a disproportionate burden of ARF [11]. Recurring 
ARF episodes heighten the risk of developing rheu-
matic heart disease (RHD) [8]. RHD remains the prin-
cipal cause of GAS-related mortality worldwide, 
affecting 1% of the population in sub-saharan Africa 
and 1,5% in Oceania, in the final stages requiring sur-
gery to replace or repair heart-valves to prevent heart 
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failure, stroke and death [12]. Glomerulonephritis, an 
immune complex-mediated condition that can arise 
from GAS infections of the skin or throat, typically 
resolves if acute renal complications like fluid overload 
and hypertension are managed effectively [13].

A less well understood condition linked to GAS is 
Pediatric Autoimmune Neuropsychiatric Disorders 
Associated with Streptococcal Infections (PANDAS). 
Here, neuroinflammation following GAS infections is 
proposed to trigger symptoms like obsessive- 
compulsive disorder, tics, and Tourette’s syndrome in 
children [14]. This disorder shares features with 
Sydenham’s chorea – affecting 20–30% of ARF 
patients – which is characterized by involuntary move-
ments and emotional disturbances, and for which a rat 
model has demonstrated the involvement of antibodies 
against GAS and the basal ganglia [15]. Recent studies 
have shown GAS-specific Th17 cells infiltrating the 
brain in mice after repeated intranasal infections [16], 
but the association of the symptoms to GAS is still 
debated. Some argue that Sydenham's chorea and 
PANDAS are not separate entities but instead should 
be termed “cerebral rheumatic fever” [17].

GAS can cause severe necrotizing soft tissue infec-
tions (NSTI), including necrotizing fasciitis, leading to 
rapid tissue necrosis and life-threatening conditions. 
About 30% of NSTI cases occur in previously healthy 
individuals, with 89% requiring mechanical ventilation 
within 24 hours due to severe septic shock [18]. GAS is 
the primary pathogen in monomicrobial NSTI, while 
other bacteria may cause polymicrobial infections like 
Fournier’s gangrene. NSTI often results in streptococcal 
toxic shock syndrome (STSS), characterized by septic 
shock, multiorgan failure, and toxin effects on skin or 
mucosal surfaces. Both NSTI and STSS can severely 
affect children, who often require more intensive care 
compared to S. aureus-induced toxic shock [19]. 
Despite treatments including surgical debridement, 
antibiotics, intensive care, IVIG, and hyperbaric oxygen 
therapy, NSTI remains highly lethal, with an 18% mor-
tality rate and a 22% amputation rate in the largest 
study to date [18].

In the 19th century, GAS infections were responsible 
for two out of every three postpartum deaths [20]. 
Despite advancements in healthcare, GAS puerperal 
fever remains the leading cause of infection-related 
death in pregnancy and the puerperium worldwide 
[21–24]. GAS also significantly affects child health, 
particularly during scarlet fever epidemics [25], which 
have seen a resurgence in regions like the UK, Australia 
[26], China, and Hong Kong [27]. Scarlet fever, a GAS 
disease characterized by fever, a skin rash (exanthem), 
and a distinctive bright red “strawberry tongue” [25], 

was once a leading cause of death among young chil-
dren. Its impact had diminished in many areas until its 
recent re-emergence.

GAS infections can manifest in atypical ways that do 
not align with classical definitions of invasive disease. 
For example, a notable case involved a young man who 
developed non-rheumatic GAS myocarditis following 
a knee abscess. His condition became so severe that it 
required extracorporeal membrane oxygenation 
(ECMO) to sustain life [28]. Another unusual case 
featured a previously healthy pregnant woman who 
was diagnosed with sinusitis and a subdural empyema, 
complicated by preeclampsia. After undergoing 
a cesarean section, she experienced seizures and fell 
into a coma upon emerging from anesthesia [29].

Over the past decade, there has been a significant 
increase in scientific research and public health advo-
cacy focused on developing an effective vaccine against 
GAS [30–33]. Recent advances in GAS research, includ-
ing a human challenge model for strep throat, are 
providing crucial insights into pathogenesis and sup-
porting the development of effective vaccines [34,35].

Prevalence of GAS diseases

GAS is estimated to cause > 517,000 deaths and > 720 mil-
lion cases of superficial infections annually worldwide 
[1]. Estimates of incidence and prevalence of GAS dis-
eases and infection outcomes are found in (Figure 1).

Acquisition of infection

GAS, a Gram-positive, β-hemolytic, chain-forming bac-
terium, is primarily a human pathogen with a unique 
restriction to our species [47]. It is asymptomatically 
carried in the pharynx by approximately 3% of adults 
and 8% of school-age children, with these rates exhibiting 
seasonal peaks during winter. This is when outbreaks 
frequently occur in schools, with up to 50% of children 
potentially carrying the outbreak strain without showing 
symptoms. Notably, children in high-income countries 
may exhibit the highest rates of GAS carriage [48]. One 
in every three children experience sore throat every year, 
and GAS pharyngotonsillitis, or strep throat, account for 
one in four of those experiences [36]. GAS accounts for 
4–10% of pharyngitis cases in adults [1].

Airborne transmission of GAS, particularly in 
schools, has been a significant concern since the 
1930s-1940s [49,50]. During school-class outbreaks 
of scarlet fever in the UK, despite hygiene measures, 
isolation of index cases, and antibiotic treatment, the 
asymptomatic carriage of the outbreak strain in class-
room contacts tripled from the first to the second 
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week [51]. By the third week, 17 to 50% of bacterial 
settle plates, placed at an elevated location in the 
classrooms, tested positive for the outbreak strain. 
Frequent surface disinfection proved ineffective in 
controlling the spread, as the children themselves 
were the primary sources of the bacteria. Evidence 
of heavy asymptomatic shedding (Figure 2), under-
scores the importance of physical distancing, 
enhanced respiratory hygiene, and improved ventila-
tion in classrooms during outbreaks [51]. Although 
scarlet fever mortality can be managed with narrow- 
spectrum penicillins, the resurgence of the disease and 
challenges in controlling outbreaks, alongside 
a concurrent rise in invasive GAS infections, are con-
cerning [52].

Invasive GAS infections can be devastating [41,43]. 
In the US, between 2005 and 2012, the mortality rates 
for invasive GAS diseases stood at 11.7%. These rates 
escalated dramatically for more severe conditions: 29% 

for NSTI, 38% for streptococcal toxic shock syndrome 
(STSS), and 45% for patients experiencing septic shock 
[53]. The reason why GAS leads to mild infections in 
some but life-threatening conditions in others has been 
the subject of extensive research. Studies suggest that 
a higher incidence of invasive disease among household 
contacts of affected individuals could be due to both the 
increased virulence of specific GAS strains and shared 
genetic susceptibility factors [54,55].

Particularly virulent clones, such as the M1T1 clone 
that arose and disseminated globally in the 1980s, and 
its sublineage the M1UK that emerged in 2015, are 
similar to other common GAS strains but have signifi-
cant molecular advantages [56,57]. The M1T1 clone is 
an emm1 (M1) type of GAS and had acquired bacter-
iophage-encoded DNAse, phage-encoded SpeA, 
increased expression of SLO and a cytotoxic NAD+ 
glycohydrolase [58]. The M1UK clone is responsible 
for the current resurgence of scarlet fever, due to 
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Figure 1. Epidemiology of Group A Streptococcus (GAS). GAS infection induces many common diseases and infection outcomes. The 
figure indicates the estimated incidence per 100,000 inhabitants and for some diseases prevalence worldwide, deaths/year world-
wide and disability-adjusted life years (DALYs)/year worldwide. Estimated incidence in the most affected risk group or setting is 
displayed. No incidence data was found for cellulitis, a more invasive form of erysipelas, hence not displayed. For NSTI, only GAS 
cases (30%) are indicated. Graph: note that the incidence scale has been cut to allow for comparisons between less common 
conditions. The bar below each illustration is proportional to the bars in the graph to allow for incidence comparisons. iGAS: invasive 
GAS infection, HICs: high-income countries, LICs: low-income countries. References: pharyngotonsillitis [36], impetigo [37], erysipelas 
[38,39], scarlet fever [25], ARF [1], RHD [12], PSGN [40], iGAS [1,23,24,41], puerperal fever [23,24,42], NSTI [18,43,44], STSS [45,46].
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mutations that boosted SpeA expression 10-fold. 
M1UK swiftly disseminated through the UK [59], as 
well as in Canada [60] and the US [61], though not 
New Zealand [62]. In contrast, a scarlet fever outbreak 
in Hong Kong and China was initially attributed to an 
emm12 clone, characterized by antibiotic resistance and 
a toxic prophage encoding SSA, SpeC, and Spd1 [27]. 
Subsequent research, however, indicated a significant 
rise in emm1 clones, suggesting a more complex epide-
miological pattern [63].

Research into the genetic predispositions to invasive 
streptococcal disease has highlighted the role of HLA 
alleles. Specific alleles such as HLA-DRB11501 and 
HLA-DQB10602 are associated with a protective effect 
against severe invasive GAS disease [64], RHD [65,66], 
and recurrent tonsillitis [67]. Conversely, alleles like 
HLA-DRB10101 and HLA-DRB10701 are linked to an 
increased risk of RHD [66,68] and recurrent tonsillitis 
[67]. A recent case-control study further identified 
HLA-DQA1 × 01:03 as doubling the risk of invasive 
GAS disease in otherwise healthy individuals [69]. 
The interactions between different HLA alleles and 

the GAS superantigen SpeA also significantly influence 
disease susceptibility [70]. For instance, HLA-DQA1 
interactions with SpeA have been identified as a risk 
factor for infection [71], while HLA-DQ interactions 
with SpeA are linked to an increased risk of nasal 
colonization by GAS [72].

Invasive GAS disease is influenced by a wide array of 
risk factors. Advanced age may increase susceptibility 
due to diminished neutrophil responses [73]. Other 
factors include blunt trauma [74], obesity, diabetes 
[75], HIV infection, cardiovascular diseases, cancer, 
injection drug use, residency in long-term care facil-
ities, homelessness, pregnancy, childbirth [22], and 
having recent influenza [76] or varicella zoster infec-
tions [77]. Exposure to children with sore throats also 
raises the risk [78], as do deficiencies in immune 
response molecules such as IL-1β [79], IL-6 [80], and 
IL-17D [81].

NSTI are more commonly associated with blunt 
trauma, absence of pre-existing skin lesions, and 
lower BMI compared to non-necrotizing cellulitis 
[82]. The post-COVID-19 context has also introduced 
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Figure 2. Clinical features of Group A Streptococcus (GAS). GAS exhibits a wide array of pathogenic effects in blood, skin- and soft 
tissues, the lymphatic system as well as on immune cells and neurons. Clinical aspects are visualized next to an example of a 
virulence factor with that property and, in some cases, the specific host cell receptor. GAS spread through airborne transmission from 
asymptomatic pharyngeal carriagers, often school-aged children. In blood, GAS causes hemolysis, replicates, dissolves clots, evades 
phagocytes, hyperactivates T-cells and impairs B-cell responses. GAS disguises as host tissue elements, internalizes through pore- 
forming toxins, induces inflammation, pain, dermal necrosis and spreads through lymphatic vessels.
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new hypotheses: some suggest that “immune exhaus-
tion” following SARS-CoV-2 infection may predispose 
individuals to invasive GAS disease, while others attri-
bute the surge in cases to “immune debt,” a result of 
prolonged social distancing measures [58]. 
Interestingly, many individuals who develop invasive 
GAS disease are previously healthy with no known 
risk factors. Immunity from prior GAS infections can 
provide some protection, but those who have experi-
enced invasive GAS infections often show lower anti-
body levels against the M1 protein and superantigens, 
increasing the risk of future episodes [83].

Establishment of infection

The establishment of a GAS infection is a complex 
process that begins with the bacterium attaching to 
pharyngeal and dermal epithelial cells. In the case of 
skin infections, areas with previous damage or injury 
can provide a conduit for GAS to penetrate the dermal 
barrier. GAS employs a variety of mechanisms to facil-
itate this attachment, making use of several key mole-
cules (Appendix, Table A1). These include M protein 
and lipoteichoic acid, which are crucial for initial 
adherence. Additionally, the bacterium utilizes fibro-
nectin and fibrinogen-binding proteins, collagen- 
binding proteins, and a hyaluronic acid capsule, all of 
which enhance its ability to bind firmly to human cells.

GAS exhibits significant genetic diversity, largely due 
to variations in the M protein, encoded by the emm 
gene. With over 200 distinct emm types identified [84], 
only a select few are responsible for the majority of 
human infections in high-income countries. GAS 
strains have historically been categorized as either 
throat-associated or skin-associated, based on the 
emm types they express. While there is some overlap 
in the types that cause strep throat and those that lead 
to invasive disease, there is notably less overlap between 
the types causing skin infections and those associated 
with invasive disease [85]. Invasive GAS diseases are 
most frequently associated with emm types 1, 3, 28, and 
12, which are linked to severe outcomes like sepsis, 
STSS, NSTI, and an increased risk of death [53]. 
These patterns are consistent across different regions, 
including Europe, where similar emm types predomi-
nate [86,87]. In China, the most common emm types 
are 12, 1, 3, and 4 [63,88].

The M protein, a pivotal virulence and immunolo-
gical factor in GAS, was first identified in studies con-
ducted by Rebecca Lancefield a century ago [89]. As the 
most abundant protein on the GAS surface, it plays 
a crucial role in the establishment of infection by bind-
ing to keratinocytes via the CD46 receptor (Figure 3) 

[90]. Beyond this initial interaction, M protein signifi-
cantly contributes to GAS pathogenicity through sev-
eral mechanisms [86,87], including antigenic variation, 
inhibition of phagocytosis, blocking the activation of 
the alternative pathway of the complement system, and 
exerting a procoagulant effect by inducing the synthesis 
of tissue factor in endothelial and monocyte cells.

Most GAS strains produce a surface polysaccharide 
capsule made of hyaluronic acid (HA), which resembles 
human connective tissue. This capsule is anti- 
phagocytic and aids in GAS attachment to keratino-
cytes and pharyngeal cells via the CD44 receptor 
(Figure 3), causing membrane ruffling and tight junc-
tion disruption that facilitate tissue penetration through 
a paracellular route [91–93]. Synthesis of the HA cap-
sule is orchestrated by the hasABC synthase operon 
[91], which constructs the linear HA polymer by 
sequentially adding glucuronic acid and β1,3-linked 
N-acetylglucosamine residues [92,93]. Interestingly, 
certain invasive GAS serotypes, such as M4 and M12, 
lack the hasABC synthase operon and do not express an 
HA capsule. Instead, these strains produce HylA, an 
enzyme that degrades HA in mammalian connective 
tissues [94]. There is a mutually exclusive expression 
pattern between the HA capsule and hyaluronidase in 
GAS strains [94]. Moreover, loss of capsule expression, 
such as in the pandemic M1T1 clone, is associated with 
increased expression of an operon encoding toxins [56]. 
Additionally, the HA capsule contributes to pilus for-
mation and biofilm development [95].

GAS can also co-opt the inflammatory response to its 
advantage in establishing pharyngeal infection. 
Specifically, the inflammation induced by interleukin-1 
beta (IL-1β) plays a pivotal role by recruiting neutrophils 
to the nasopharynx. Research indicates that when IL-1β 
signaling is inhibited, the protease SpeB is neutralized, or 
neutrophils are depleted, the nasal carriage of GAS is 
significantly reduced [96]. This suggests that GAS benefits 
from the inflammatory response in the upper respiratory 
tract, possibly by disrupting the colonization resistance 
normally provided by the native microflora [96].

Plasticity is seen in several other GAS proteins than 
M protein. Historically, the T-antigen has been used as 
a supplementary serotyping tool to classify GAS strains 
into 21 T-types. T-antigens are highly variable molecules 
that make up the GAS pilus and are involved in adhesion, 
colonization and immune evasion [97]. The mechanisms 
behind GAS genetic diversity are homologous recombina-
tion and high levels of accessory gene plasticity [84]. The 
maintenance of many distinct genetic lineages of GAS not 
restricted to geographical boundaries is suggestive of rapid 
international spread followed by diversifying selection 
probably driven through immune selection and/or strain 
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competition between phylogroups [84]. Approximately 
50% of the accessory gene pool of GAS is phage related 
[84]. Recent studies of GAS pangenome has systematically 
analyzed GAS genes in vitro and in vivo and found that 
24% of the genome is essential for GAS survival [98].

Recent studies in non-human primate (NHP) models 
have identified numerous GAS genes involved in phar-
yngitis [99], including M protein, ScpA, SOF, and 
S. pyogenes adhesion and division protein (SpyAD), the 
latter of which also contributed to colonization and dis-
ease in NHP studies of GAS genital tract infection [100].

Immune evasion

A distinctive characteristic of GAS, compared to other 
major human bacterial pathogens, is its ability to replicate 
in human blood. This capability is typically assessed using 
the Lancefield whole blood killing assay [101]. Researchers 
recognize that the bacterium’s ability to resist opsonization 
and phagocytosis is a primary factor contributing to its 

virulence [102]; hence, this capacity remains a subject of 
extensive research over the years [103].

M protein plays a crucial role in the immune evasion 
strategies of GAS, primarily by inhibiting the comple-
ment system through two key mechanisms. It binds to 
factor H and fibrinogen (Figure 3), which significantly 
reduces the opsonization of GAS (Figure 2), thereby 
impairing the immune system’s ability to mark the 
bacteria for destruction [104,105]. M protein also inter-
acts with C4b-binding protein to inhibit the classical 
pathway of complement activation [106]. M protein has 
affinity for several other plasma proteins, including 
IgG, IgA and complement regulatory proteins [107]. 
Different M proteins have different preferences/specifi-
cities, e. g. M-type 1, 5 and 6 bind fibrinogen but not 
C4b-binding protein, which instead is bound by M4, 
M22 and M60 [108]. Without M protein, GAS becomes 
highly susceptible to rapid phagocytosis [109]. 
Immunity developed against a specific strain’s 
M protein can protect against GAS infection by enhan-
cing phagocytosis and bacterial killing. This has led to 
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Figure 3. Pathogenesis of Group A Streptococcus (GAS). GAS induces pathology through the actions of toxins and superantigens, 
immune evasion, host cell attachment, and tissue dissemination. Specific examples of virulence factors in these categories are 
visualized and, in some cases, the specific host cell receptors. GAS lyses red blood cells, hyperactivate T-cells, evade phagocytes, 
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disseminate through host tissues by degrading host proteins through protease activity and fibrinolysis through plasminogen 
activation. Pain is induced through activation of nociceptor neurons and skin necrosis through gasdermin activation.
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the classification of GAS strains into specific 
M serotypes [110]. However, the immune response to 
M protein can also have detrimental effects. Antibodies 
generated against M protein may induce autoimmunity, 
as they can cross-react with human connective tissue 
antigens due to structural similarities [111,112]. 
Additionally, the M gene superfamily extends beyond 
M proteins to include M-related proteins and immu-
noglobulin-binding proteins, which also play roles in 
the bacterium’s interaction with the host immune sys-
tem [113–115].

The surface-expressed M1 protein of GAS plays 
a critical role in evading host defenses by interacting 
with key antimicrobial components. It can sequester 
and neutralize LL-37, a potent antimicrobial peptide, 
thereby preventing it from exerting its antibacterial 
activity [116]. Additionally, M1 protein exhibits resis-
tance to the antimicrobial activity of histones, which 
are crucial components of neutrophil extracellular traps 
(NETs). This resistance helps GAS to survive and pro-
pagate even in the hostile environment created by neu-
trophil activation [117].

Invasive M1T1 GAS strains utilize several sophisti-
cated mechanisms to evade neutrophil defenses. These 
strains express a phage-encoded DNAse, Sda1, which 
degrades neutrophil extracellular traps (NETs) and the 
bacterium’s own CpG-rich DNA [118]. Sda1 is critical 
for promoting resistance to neutrophils and enhancing 
virulence, as demonstrated in murine models of necro-
tizing fasciitis [119]. It also suppresses macrophage 
activity and TLR9-mediated immune responses [119]. 
Additionally, the streptococcal collagen-like protein 1 
(Scl-1), prominently expressed in the M1T1 clone, pro-
tects GAS from NET-associated antimicrobial peptides 
and inhibits the release of myeloperoxidase (MPO), 
thereby reducing NET formation [120]. GAS can 
further impair neutrophil defenses by engaging the 
inhibitory Siglec-9 receptor via its hyaluronic acid 
(HA) capsule, which blunts the oxidative burst, NET 
formation, and overall bactericidal activity of neutro-
phils [121]. The toxin streptolysin O (SLO) also plays 
a role by impairing neutrophil oxidative burst, degra-
nulation, and NET formation at sublethal concentra-
tions [122].

The classical Lancefield group A carbohydrate 
(GAC) antigen [123], a high molecular weight polymer 
consisting of rhamnose with an N-acetylglucosamine 
(GlcNAc) side chain, makes up about 40–50% of the 
GAS cell wall. This antigen is the species-defining mar-
ker used routinely for the rapid diagnosis of strep 
throat. Removal of the GlcNAc side chain increases 
GAS susceptibility to neutrophil killing (Figure 3), 

platelet-derived antimicrobials in serum, and the anti-
microbial peptide LL-37, and results in attenuation in 
infection models [124]. The impact of the GAC 
GlcNAc side chain on GAS virulence may vary depend-
ing on the presence of other virulence factors within 
each strain [125]. It is important to note that 2–3% of 
streptococci that carry the group A antigen are not 
S. pyogenes but rather Streptococcus dysgalactiae sub-
species equisimilis (typically carrying group G or 
C antigens) or Streptococcus anginosus (a commensal 
viridans streptococcus) [126]. Furthermore, not all 
M-types of GAS are virulent, and many group 
G streptococci, which can share pathogenic similarities 
with GAS, are capable of causing disease [127].

GAS chemokine-inactivating protein (SpyCEP), 
a surface-bound serine protease, plays a crucial role in 
immune evasion by targeting and degrading chemo-
kines such as CXCL8 (Figure 3). This activity signifi-
cantly hinders the recruitment of neutrophils to 
infection sites (Figure 2), thereby facilitating the persis-
tence and spread of GAS [128,129]. Due to its pivotal 
role in immune modulation and high immunogenicity, 
SpyCEP is recognized as an attractive candidate for 
vaccine development [130]. RNAseq analysis of GAS 
infected tonsil epithelial cells showed that while GAS 
infection generally induces a pro-inflammatory 
response, SpyCEP specifically reduces the levels of 
CXCL8 post-transcriptionally, thus mitigating one of 
the body’s key inflammatory reactions to infec-
tion [131].

Streptococcal C5a peptidase (ScpA), a surface-bound 
endopeptidase, plays a critical role in GAS immune 
evasion by cleaving the complement-derived chemo-
taxin C5a at its PMN-binding site, thereby inhibiting 
the recruitment of phagocytic cells (Figure 3). Recent 
research has further uncovered that ScpA also targets 
C3, impairing neutrophil activation, phagocytosis, and 
chemotaxis [132]. Beyond its role in immune modula-
tion, ScpA aids in GAS nasal colonization by adhering 
to epithelial and endothelial cells through mechanisms 
independent of the complement system. Moreover, 
intranasal immunization against ScpA has been shown 
to prevent GAS infection in murine nasal-associated 
lymphoid tissue (NALT), highlighting its potential as 
a target for vaccine development [133].

A recently identified immune evasion strategy 
employed by GAS involves the use of the surface- 
associated S protein to capture red blood cell frag-
ments. This mechanism aids GAS survival by cloaking 
its opsonic targets under natural host cell components, 
effectively disguising the bacteria from the host 
immune system. The presence of S protein is crucial 
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for maintaining the virulence of GAS; its absence leads 
to reduced virulence and affects the development of 
immunological memory against the pathogen [134].

Although traditionally considered an extracellular 
pathogen, recent studies have explored the intracellular 
capabilities of GAS. GAS has demonstrated the ability 
to survive within macrophages, a process that relies on 
the presence of M1 protein [135], and is proposed to 
potentially account for the presence of viable bacteria in 
biopsies from patients undergoing antibiotic therapy 
[136]. GAS can replicate within viable human macro-
phages, indicating an active intracellular life cycle [137]. 
In the context of pharyngeal keratinocytes, GAS 
secretes SLO, which triggers autophagy – a process 
where the cell attempts to digest internalized material. 
However, the combined actions of SLO and NADase 
disrupt the maturation of autophagosomes, thereby 
prolonging GAS’s intracellular survival (Figure 2) 
[138]. Additionally, GAS evades clearance by keratino-
cytes due to a lack of ubiquitination, which is essential 
for targeting bacteria for autophagy [139].

Beyond its classical interactions with phagocytes and 
lymphocytes, GAS also significantly impacts coagula-
tion and thrombocytes. Severe infections often induce 
a pro-coagulant and pro-inflammatory state, with some 
effects directly linked to the actions of M protein [140]. 
Common complications in severe infections include 
deep venous thrombosis [141] and thrombocytopenia. 
These issues may arise from complement activation on 
the surface of activated thrombocytes, leading to their 
activation, aggregation into thrombi, and complex for-
mation with neutrophils and monocytes. This process 
ultimately contributes to thrombocyte phagocytosis 
[142]. Similarly, the binding of fibrinogen and IgG by 
GAS in plasma triggers comparable effects, promoting 
coagulation disturbances [143].

Immunity to GAS is multifaceted and varies signifi-
cantly with age. Adults generally experience fewer 
infections than children, partly due to higher antibody 
titers [144]. Additionally, complete immunity against 
scarlet fever typically develops over time, with anti- 
GAS antibodies potentially persisting for up to 45  
years. This long duration supports the belief that 
immunity is primarily M-type specific [145,146]. 
However, recent studies indicate that invasive GAS 
infections can elicit both strain-specific and cross- 
strain specific opsonic antibodies [147]. GAS has 
evolved sophisticated mechanisms to evade humoral 
immune responses. For example, IdeS, a cysteine pro-
teinase, specifically cleaves the heavy chain of 
Immunoglobulin G (IgG), impacting its functionality 
(Figure 2) [148,149]. Similarly, the endoglycosidase 
EndoS targets the Fc region of IgG, hydrolyzing it and 

impairing its effectiveness [150–152]. While IgG anti-
bodies are crucial for protecting against GAS invasion, 
IgA antibodies play a key role in preventing adherence 
and colonization [153]. Similar to S. aureus protein A, 
M protein can reverse antibody orientation through Fc- 
binding, especially in saliva [154]. Additionally, GAS 
expresses IgA binding proteins that interfere with the 
effector functions of IgA, further complicating the 
immune response [155].

While GAS has known evasion strategies for phago-
cytes, its interactions with other leukocytes like lym-
phocytes are less documented. Lymphocytes typically 
mount a Th1-type pro-inflammatory response to GAS, 
characterized by the production of cytokines such as 
IL-1β, IL-6, TNF, IL-12, IFN-γ, and IL-18 [156]. 
Studies on human pharyngitis have shown that indivi-
duals who develop pharyngitis exhibit increased serum 
cytokines, a reduction in conventional lymphocytes, 
and activation of unconventional lymphocytes [35]. 
Specifically, after tonsillar challenge, elevated levels of 
IL-1β, IL-1Ra, IL-6, and IL-18 in saliva, along with IL- 
1Ra, IL-6, IFN-γ, IP-10, and IL-18 in serum, indicate 
strong local and systemic pro-inflammatory responses. 
Additionally, there are increases in classical monocytes 
and total dendritic cells in peripheral blood, with 
reductions in B-cells and CD4+ T-cells. While conven-
tional peripheral T-cells show no activation, T-cells 
expressing γδTCR and Vδ2, as well as MAIT cells, are 
activated.

Tissue invasion

In murine models, the histopathology of streptococcal 
NSTI shows that while the epidermis remains intact 
initially, the underlying tissues exhibit significant 
inflammatory infiltrates, pronounced necrosis, and 
thrombosis, along with a massive bacterial burden, 
present both as aggregates and within cells [157]. 
Over time, necrosis progresses from the deeper tissues 
to the epidermis, demonstrating the GAS’s capability to 
disseminate through deep layers of soft tissue and 
invade extensive areas, even with minor epidermal dis-
ruptions. The NHP model has been used to identify 
genes required for necrotizing myositis, and sequencing 
identified around 100 involved GAS genes [158].

GAS possesses several virulence factors that inter-
act with plasminogen, converting it to plasmin 
[159,160]. This activation of the host’s clot- 
dissolving system facilitates the bacterium’s invasion 
and movement through tissue barriers. Plasmin aids 
GAS dissemination by proteolytically degrading host 
defense proteins. Key plasminogen-activating mole-
cules include streptokinase, a well-known secreted 
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thrombolytic enzyme (Figure 2) [161], as well as plas-
minogen-associated M protein (PAM), alpha-enolase 
[162], and glyceraldehyde-3-phosphate dehydrogen-
ase. In murine models, blocking streptokinase signifi-
cantly improves survival rates, likely due to the 
inhibited ability of GAS to escape from blood clots 
[163]. Streptokinase activates plasminogen, promoting 
GAS dissemination at wound sites, as it facilitates the 
rapid dissolution of fibrin clots and the retraction of 
the keratinocyte wound layer, thus promoting bacter-
ial spread [164].

Streptokinase is so efficient that it is used in medi-
cine as treatment during thrombo-embolic events such 
as heart attacks, pulmonary embolisms and arterial 
clots. There is a production shortage of streptokinase, 
prompting efforts to genetically engineer less virulent 
streptococcal strains to increase availability [165]. 
Despite its significance, GAS can still acquire plasmin 
without streptokinase by utilizing host activators like 
urokinase plasminogen activator (uPA) [166], 
a capability recently demonstrated in a susceptible 
mouse model [167].

Initially mis-classified as a superantigen, streptococ-
cal pyrogenic exotoxin B (SpeB) is an important viru-
lence factor in GAS (Figure 2). SpeB is both a secreted, 
extracellular cysteine protease and a surface-bound 
adhesin with binding activity to laminin and other 
glycoproteins. The majority of pathogenic GAS strains 
secrete SpeB [168], which degrades nearly all proteins 
secreted by GAS, including other virulence factors. This 
protease plays a vital role in degrading the extracellular 
matrix, aiding colonization, and disrupting competitor 
bacteria such as S. aureus in biofilms [169]. It also 
cleaves desmoglein 1 and 3, exacerbating skin involve-
ment in GAS infections [170], and neutralizes the sig-
naling and antibacterial properties of chemokines from 
inflamed epithelium [171]. SpeB and SIC were among 
the streptococcal proteins identified in a comprehensive 
proteomic analysis of GAS infected human samples 
[172]. Furthermore, SpeB can directly activate IL-1β, 
bypassing canonical inflammasome pathways, enhan-
cing immune responses that restrict GAS invasion 
(Figure 3) [79]. In some cases, invasive GAS strains 
may mutate to repress SpeB expression, helping them 
evade these immune responses.

Recent studies have linked GAS-induced endothelial 
apoptosis to both SpeB and the caspase pathway, 
although the exact mechanisms were initially unclear 
[173]. A significant breakthrough was the discovery 
that SpeB triggers epidermal pyroptosis, an inflamma-
tory form of cell death, by cleaving gasdermin 
A (GSDMA). GSDMA acts as a sensor, substrate, and 
effector of pyroptosis, making it central to this process 

(Figure 3) [174,175]. GSDMA cleavage and activation is 
beneficial in severe GAS infections, as it leads to apop-
tosis in keratinocytes, protecting mice from widespread 
disease. Inhibitors of SpeB can enhance GAS clearance 
in the presence of human neutrophils [176].

The GAS extracellular nuclease Sda1 mediates M1 
GAS escape from NETs (Figure 3), and its upregulation 
in vivo serves as a selective force for covR/S mutations 
associated with increased tissue dissemination [177]. 
Another DNAse, Spd1 (Figure 3), may contribute to 
nasopharyngeal shedding of GAS. Recent epidemic 
emm3 genotype GAS strains are seen to have gained 
a prophage expressing Spd1 and superantigen 
SpeC [178].

GAS has a preference for inducing pathology in the 
lymphatic system and draining lymph nodes. Recent 
data have enhanced our understanding of GAS lym-
phatic spread (Figure 2). The lymphatic vessel endothe-
lial receptor-1 (LYVE-1), sharing 41% amino acid 
sequence similarity with CD44, is identified as 
a critical host receptor for capsular HA (Figure 3) 
[179]. Non-encapsulated strains show reduced ability 
to disseminate to draining lymph nodes in vivo, while 
hyper-encapsulated (mucoid, often covR/S mutant) 
strains have a particular propensity for lymphatics. 
Recent findings demonstrate GAS spread through lym-
phatic metastasis: pathogenic spread through lymphatic 
vessels [180]. The bacteria can enter afferent lymphatics 
and reach lymph nodes, and use efferent lymphatics to 
enter the bloodstream [180]. Metastasizing bacteria are 
extracellular. Furthermore, mild blunt contusion of soft 
tissue enhances bacterial migration to the local draining 
lymph node from the site of contusion following GAS 
bacteremia [181].

Streptococcal inhibitor of complement (SIC) is 
a virulence factor expressed by M1 strains, known to 
inactivate components of the complement system 
(Figure 2, 3), inhibit host antimicrobial factors, and 
contribute to bacterial adherence to epithelial cells. 
Human antibodies to SIC are prevalent (around 40%), 
surpassing the frequency of M1 antibodies [182]. SIC 
immunization was found to protect mice from disse-
minating disease following intranasal or intramuscular 
infection. Notably, naturally occurring SIC antibodies 
did not provide protection against GAS growth in 
whole blood, whereas vaccine-induced antibodies 
did [183].

Toxins and superantigens

A severe form of streptococcal (or staphylococcal) sep-
tic shock is STSS, a state of multiorgan failure and signs 
of toxicity on mucosal surfaces following infection 
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[184]. STSS also occurs in young, immunocompetent 
individuals who rapidly deteriorate into life-threatening 
states with high mortality despite appropriate treat-
ment. The extreme toxicity caused by GAS is likely 
due to a combination of toxins and superantigens 
[185]. Another significant manifestation of toxicity 
associated with GAS is scarlet fever, historically respon-
sible for a significant portion of childhood mortality, 
now resurgent in many parts of the world.

The pore-forming streptolysin O (SLO) induces 
rapid, dose-dependent apoptosis in most human cells, 
particularly macrophages and neutrophils [186]. These 
cytolysins not only form pores in cholesterol-rich 
membranes but also exhibit high-affinity lectin activity 
[187]. SLO promotes survival, replication, and cytosolic 
growth in macrophages [137]. The recent emergence of 
pandemic clones of GAS with low capsule expression 
and high SLO expression has been noted [56]. In 
human decidual tissues, SLO and SpeB were identified 
as the main virulence factors [42]. Following intramus-
cular injections of SLO into rats, decreased tissue per-
fusion and occlusive intravascular complexes of 
platelets and neutrophils were observed, indicating 
that SLO may induce microvascular thrombosis leading 
to toxin-induced ischemia [188].

Another GAS pore-forming toxin, streptolysin 
S (SLS), induces a dramatic osmotic change in red 
blood cells, leading to cell lysis (Figure 2) [189]. 
Specific binding to ion channels on erythrocytes 
(Band 3) and keratinocytes (NBCn1) has recently 
been identified as important (Figure 3) [189,190]. SLS 
is required for the establishment of nasopharyngeal 
infections in HLA-transgenic mice and contributes to 
localized tissue destruction of nasal epithelium [191]. 
The “pain out of proportion” often described as 
a hallmark of necrotizing fasciitis may be explained 
through direct activation of TRPV1+ nociceptor neu-
rons by SLS (Figure 2, 3) [192]. SLS-induced pain 
triggers the release of a neuropeptide that inhibits 
recruitment of neutrophils, a form of neuroimmune 
hijacking. This effect can be blocked both by antagoniz-
ing the neuropeptide and through local botulinum 
toxin (Botox) injection, reducing lesion development 
and infection-related morbidity.

GAS and S. aureus secrete toxins known as super-
antigens (Figure 3). These molecules cross-link the beta 
chain (Vβ) of the T-cell receptor with human MHC 
class II (HLA) expressed on antigen-presenting cells (B 
cells, monocytes, and dendritic cells). This leads to 
activation, excessive release of inflammatory cytokines, 
and proliferation of T-cells (Figure 2). The primary 
toxin implicated in scarlet fever is thought to be SpeA 
[25]. In addition to the classical GAS superantigens 

(SpeA, SpeC, SpeG-M, SmeZ, and SSA), two new 
superantigens have been recently described: SpeQ and 
SpeR [193]. These 13 superantigens are expressed in 
different combinations and quantities by different clin-
ical isolates, as the majority of them are encoded on 
mobile genetic elements. A typical GAS isolate 
expresses 3–4 superantigens, with SpeA being the 
most common to find in NSTI or STSS isolates [194]. 
Even though superantigens are highly effective at low 
concentrations, the quantity of expression can matter. 
The expression of SpeA was 9 times higher in the 
M1UK clone than in comparable isolates [59]. 
However, no correlation has been demonstrated 
between the amount of superantigen expressed and 
disease severity; rather, the opposite is observed. 
Identical strains can cause both mild and severe inva-
sive disease [195]. Individuals with a propensity to 
respond more strongly to superantigens develop more 
severe manifestations [196], and low humoral immu-
nity confers susceptibility to severe disease [83].

In addition to severe disease and cytokine storms, 
superantigen function is linked to GAS colonization 
[72]. Nasopharyngeal infection by GAS requires super-
antigen-responsive Vβ-specific T cells, suggesting that 
GAS manipulate T-cells to establish nasopharyngeal 
infection [197]. Thus, superantigen interactions with 
host cells not only depend on HLA [64], but also the 
Vβ-profile of the host’s T-cell repertoire. Typically, 
superantigen activation results in the expansion of 
T-cells with specific Vβ receptors in the acute phase, 
followed by depletion of that specific T-cell population 
[19,198]. Vβ activation in STSS correlates with the 
number of organ dysfunctions [19]. A newly described 
subset of T-cells, the mucosal-associated invariant 
T-cells (MAIT-cells), has been linked to superantigen 
activation. Although few in circulation, MAIT cells are 
the main responders among T-cells to superantigens 
and produce a majority of the cytokines [199]. MAIT 
cells in patients with STSS were activated and prolifer-
ated. In tonsillar tissue, the presence of SpeA and other 
superantigens resulted in B cell apoptosis and abroga-
tion of total IgA, IgM, and IgG production [200]. The 
superantigens drove the follicular T-cells to 
a proliferating phenotype with the loss of tonsillar 
B-cells and antibody production.

M protein is anchored to the cell wall of GAS by 
sortase A [201]. While not generally considered 
a superantigen, M protein exhibits superantigen activity 
when in a highly purified soluble form lacking the 
membrane-spanning region [202]. In circulation, the 
virulence contributions of M protein expand from pha-
gocyte evasion to additional potent proinflammatory 
effects. M protein released from the bacterial surface 
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forms pathological complexes with fibrinogen [83], 
leading to the activation of neutrophils through beta2 
integrins [84]. This activation results in the release of 
heparin-binding protein, which induces vascular leak-
age and contributes to severe pulmonary damage and 
multi-organ failure, characteristics of STSS [84]. 
Released M1 protein also activates the NLRP3 inflam-
masome, leading to the release of IL-1β and macro-
phage programmed cell death [203].

In tissue-persistence: Intracellular survival, 
biofilm and immune modulation

Streptococci are well-known to respond appropriately 
to narrow-spectrum antibiotics, such as simple penicil-
lins. However, recurrent disease, indicative of local 
persistence, is well-known clinically [204], and biopsies 
from severe tissue infections such as NSTIs contain 
a high bacterial burden despite prolonged antibiotic 
treatment [136]. Recurrence of erysipelas is around 
16% [205]. Intracellular invasion by GAS, once consid-
ered an extracellular bacterium, was described long ago 
[153,206]. Tonsils excised from individuals after treat-
ment failure of pharyngotonsillitis harbor intracellular 
GAS [207]. Fibronectin-binding proteins associated 
with internalization are similar between invasive and 
non-invasive isolates [208]. This internalization might 
represent successful containment by the host, but it 
could also lead to invasion of deeper tissues or consti-
tute a pathogen reservoir with associated risk of recur-
rence. Another possible explanation for persistence in 
GAS infections is biofilm formation, identified in tissue 
biopsies from a third of NSTI patients [209]. Biofilm 
formation can be directly influenced by host and envir-
onmental factors [210].

GAS preferentially targets human tonsils, akin to 
nasal mucosa-associated lymphoid tissue (NALT) in 
mice [133]. GAS stimulation results in the expansion 
of CD4+ IL-17+ T-cells in NALT [211]. Exposure to 
saliva leads to GAS aggregation and inhibits binding to 
buccal epithelium [212]. Recurring tonsillitis, linked to 
immunosusceptibility involving HLA haplotypes and 
follicular T-cells, shows reduced germinal center size 
and fewer helper T-cells and B-cells, impairing anti-
body responses [67]. In recurrent tonsillitis, germinal 
center T-cells express granzyme B, leading to B-cell 
cytotoxicity, revealing a novel host-pathogen interac-
tion mechanism.

Genetics and the regulation of virulence

The GAS genome, spanning around 1.85 Mb and 
encompassing approximately 1,800 genes, contains 

many genes whose roles in pathogenesis are still not 
fully understood [213]. Key to the coordinated expres-
sion of these genes are several genetic regulatory sys-
tems, which include response regulators and two 
component signal transduction systems [214]. The 
response regulators, such as multiple gene regulator 
(mga), RofA-like protein (RALP), and Rgg/RopB, con-
trol expression of various virulence factors in a growth 
phase-dependent manner. The mga regulator, for 
instance, activates the transcription of multiple viru-
lence factors such as M protein, ScpA, M-like proteins, 
serum opacity factor (SOF) and SIC [3]. Conversely, 
Nra (negative regulator of GAS) suppresses these and 
other genes, including mga itself [215]. Two- 
component systems such as CsrRS/CovRS, FasBCAX, 
and Ikk/Irr play crucial roles in modulating GAS 
pathogenicity. The CovRS system, in particular, 
represses the expression of about 15% of the GAS 
transcriptome, including many virulence factors [216], 
and its inactivation can lead to increased virulence. 
This system is a known hotspot for inactivating muta-
tions that can enhance GAS pathogenicity [216]. The 
Ihk/irr two component system is upregulated during 
pharyngitis [217], promotes evasion of neutrophil pha-
gocytosis, and is required for full virulence in a mouse 
infection model [218]. Ihk/Irr is likewise transiently 
upregulated in GAS shortly following intracellular 
uptake in macrophages; however, after several hours, 
up-regulation of the CovR/S system predomi-
nates [219].

A new quorum-sensing system, sil, present in 
a subpopulation of GAS strains, controls the expression 
of bacteriocins in response to host signals like aspara-
gine [220]. This system can trigger an autoinduction 
mechanism that gives GAS a competitive advantage in 
polymicrobial environments. Additionally, GAS 
induces endoplasmic reticulum stress to acquire aspar-
agine, a process that can be mitigated by PERK/ISR 
inhibitors, which have shown promise in reducing bac-
terial load and tissue damage in the infected host [221]. 
Furthermore, GAS adapts to various environmental 
stressors, such as glucose starvation, by upregulating 
the arginine deiminase pathway. This pathway 
enhances bacterial survival and virulence, partly by 
increasing the expression of exotoxins [222]. In poly-
microbial environments, the Gram-negative metabolite 
Oxo-C12 has been shown to promote GAS adherence 
to host tissues and biofilm formation, highlighting the 
complex interplay between GAS and other microbial 
communities [223].

GAS is a natural source of Cas9 nuclease [224], often 
used today as a genome editing-tool for precise DNA 
targeting [225,226]. Cas9 is considered a bacterial 
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immune defense against phages and plasmids, but it is 
increasingly recognized as a GAS virulence factor. Cas9 
mediates adherence, growth in human blood, and viru-
lence in a murine NSTI model [227]. Most humans 
have antibodies [228] and T-cell responses to Cas9 
[229]. The GAS CRISPR-Cas9 system prioritizes 
defense against the most recent invader [230]. 
Additionally, there are certain phages that neutralize 
this bacterial immune system [231,232].

Diagnostic issues of invasive disease

Diagnosing NSTI, including necrotizing fasciitis and 
myositis, presents challenges due to the absence of 
cardinal symptoms. The most common symptom 
observed is bruising of the skin in 51% of patients 
[18]. Other frequent symptoms include severe pain 
requiring opioids (42%), purple/black discoloration of 
the skin (32%), gas on radiology (30%), skin bullae 
(27%), crepitus (14%) and skin anaesthesia (6%). 
However, the majority of patients (87%) exhibit one 
or more of these findings. Although laboratory values 
suggest infection, no specific biomarker for NSTI has 
been identified.

The Laboratory Risk Indicator for Necrotizing 
Fasciitis (LRINEC) score was developed to predict 
NSTI risk early on [233], but its predictive value is 
limited [234]. Efforts to enhance the LRINEC score by 
emphasizing high CRP values and clinical features like 
pain out of proportion have been made [235]. Some 
advocate for rapid StrepA testing in NSTI cases [236] as 
in pharyngitis [237]. Other investigated biomarkers 
include the nitric oxide system [238] and inflammatory 
cytokines [234]. Pentraxin-3 has been associated with 
negative outcomes such as septic shock, amputation, 
and risk of death [239]. Thrombomodulin has been 
proposed as a biomarker for NSTI, showing promise 
in discriminating between NSTI and non-NSTI cases 
[240]. Additionally, a distinct biomarker profile distin-
guishing GAS NSTI from other types of NSTI has been 
identified, involving differential expression of IL-2, IL- 
10, IL-22, CXCL10, Fas-ligand, and MMP9.

Proteomic analysis of NSTI samples identified 19 
GAS proteins, including SIC, trigger factor (TF), and 
phosphoglycerate kinase [172]. Among human proteins 
detected, 38% were neutrophil proteins, such as alpha 
enolase and lactotransferrin, proposed as biomarkers. 
Transcriptomic analysis revealed a strong interferon- 
related response specific to GAS NSTIs, with mediators 
CXCL9, CXCL10, and CXCL11 identified as potential 
diagnostic biomarkers [241]. Further technical 
advances promise to improve our understanding of 
the landscape of proteins at work during streptococcal 

infections. Detailed mass spectrometry of human 
plasma protein interactions with GAS found both 
already described virulence mechanisms and new inter-
actions [242]. Detailed proteomics of mice infected by 
GAS found markers trackable in plasma samples of 
infected patients [243].

Diagnosing STSS can be challenging, despite con-
sensus definitions [184]. It is possible that physicians 
frequently categorize STSS cases as septic shock or 
invasive GAS disease because of the overlap in presen-
tation such as hypotension with multiple organ failure 
and isolation of GAS from a normally sterile site, and 
STSS could be 5.3 times more common than what is 
currently diagnosed by US physicians [45]. 
Importantly, there is no age restriction in the STSS 
criteria.

Treatment of invasive infections

Most GAS infections are treatable with penicillin [237], 
but treatment of invasive disease requires more com-
plex management. A standard approach combines a β- 
lactam antibiotic with clindamycin to reduce toxin 
production, alongside surgical debridement. Despite 
these measures, mortality persists, leading physicians 
to consider additional treatments, though their efficacy 
is uncertain. In a large NSTI patient cohort, all 409 
patients underwent surgery within a median of 
19 hours of admission, with a median of 4 surgeries 
[18]. Most patients received combination antibiotics: 
98% clindamycin, 87% a carbapenem, and 62% cipro-
floxacin. Additionally, 80% received hyperbaric oxygen 
treatment (HBOT) and 58% received intravenous 
immunoglobulin (IVIG). The effectiveness of HBOT 
and IVIG in treating GAS NSTI remains debated.

The efficacy of adjunctive clindamycin treatment can 
be related to reduced Sda1 and SLO activity [244]. 
A retrospective cohort study of US hospitals showed 
that adjunctive clindamycin confers a mortality benefit 
[245]. The odds ratio for in-hospital mortality was 0.44 
for clindamycin treated patients with invasive GAS 
infections, compared to non-clindamycin treated 
patients.

IVIG treatment confers inhibitory activity against 
superantigens [246–248], thus it was proposed that 
IVIG could enable a conservative surgical approach in 
combination with clindamycin [249]. A single-center 
randomized controlled study of adjunctive IVIG in 
NSTI of all microbiological etiologies showed no ben-
efit [250]. However, in the subgroup of patients domi-
nated by GAS infections, i.e. those patients with NSTI 
of the extremities, IVIG treatment was found to be 
beneficial. A single dose of 25 g IVIG is sufficient to 
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achieve superantigen neutralization, and there is 
a correlation between administered dose IVIG and 
superantigen protection [194]. IVIG was associated 
with survival in a cohort of 126 patients with GAS 
NSTI [82]. In STSS, IVIG is a clear survival factor, 
shown in this meta-analysis [251]. Recently, affinity 
purification of IVIG was shown to increase its effec-
tiveness in promoting GAS opsonophagocytosis [252].

In the case of HBOT, a systematic review from 2005 
failed to locate any relevant clinical evidence support-
ing or refuting its effectiveness in managing NSTI 
[253]. Randomized trials are sorely needed. However, 
a meta-analysis of non-randomized studies involving 
patients with NSTI of all microbiological etiologies 
showed a pooled odds ratio for in-hospital mortality 
of 0.44 in favor of HBOT [254]. Further, the odds ratio 
for amputation was 0.6 in favor of HBOT, and patients 
ineligible for HBOT (e.g. due to severe hemodynamic 
instability) showed decreased odds of survival [255]. An 
American nationwide retrospective study involving 
60,481 patients with NSTI of all microbiological etiol-
ogies revealed that HBOT is associated with decreased 
mortality and amputations, despite the fact that only <  
1% of patients received it between 2012 and 2020 [256].

Finally, interesting preclinical research is beginning 
to emerge in the realm of specific anti-virulence ther-
apeutic strategies targeting GAS. For instance, treat-
ment with a pan-caspase inhibitor reduced GAS skin 
lesion size and bacterial counts in mice [257], and 
similar reduction in skin lesion size occurred when 
GAS-induced pain was blocked by local Botox injection 
[192]. Additional examples include the broad-spectrum 
neutralization of GAS pore-forming toxins achieved 
with human erythrocyte membrane-coated nanoparti-
cles [258], the development and characterization of 
a SpeB inhibitor [176], and monoclonal antibodies 
against SLO or M protein that reduced morbidity in 
GAS superinfection of influenza in a murine 
model [259].

Antibiotic resistance

A retrospective study of American NSTI patients 
between 2015–2018 found that clindamycin resistance 
was common (31%) in GAS NSTI isolates, and that this 
resistance was associated with more frequent need for 
amputations [260]. Adjunctive clindamycin may be 
replaced by linezolid as resistance to clindamycin 
increases [261]. Another alternative could be tedizolid 
(a newer oxazolidinone) that had comparable results to 
linezolid in a murine GAS model [262]. Additionally, 
adjunctive treatment with rifampicin could be added to 
the β-lactam and clindamycin regimen [263]. A GAS- 

infected skin tissue model showed surprisingly high 
bacterial counts after treatment with penicillin and 
clindamycin in high doses, while adjunctive rifampicin 
reduced bacterial counts and bacterial metabolism. 
Concerningly, the first step in developing β-lactam 
resistance has been discovered in two GAS strains 
[264]. A study of 7025 GAS genomes identified 137 
strains with reduced β-lactam MICs [265]. This is 
a warning signal about a potential future where strep 
throats may not be so reliably treated with penicillin, 
with massive clinical implications.

Antibiotic resistance has also been described in GAS 
against commonly used antibiotics such as erythromy-
cin, tetracycline and fluoroquinolone [266–268]. On 
a global scale, 38% of GAS strains are tetracycline 
resistant and 25% erythromycin resistant [267]. 
During a scarlet fever outbreak in Beijing, 96% of 
strains were erythromycin resistant, 94% tetracycline 
resistant and 79% were clindamycin resistant [266].

Progress in GAS vaccine development

Lack of relevant animal models, high genetic diversity 
of antigen targets, safety concerns, lack of consensus on 
clinical endpoints for establishment of proof of con-
cept, and uncertain market incentives have created 
major impediments to progress in GAS vaccine devel-
opment [269]. The pipeline of GAS vaccines remains 
relatively empty [270]. However, the field of GAS vac-
cine development has had a revival, especially since the 
2018 WHO resolution on rheumatic fever and RHD.

The most advanced M protein (StreptAnova 30- 
valent, J8/S2 combivax, P * 17/S2 combivax, 
StreptInCor) and non-M protein (Combo4, VAX-A1, 
Combo5, TeeVax) vaccine candidates are reviewed in 
[270]. Successful early phase clinical trials in humans 
have been conducted without serious safety signals with 
4 M protein vaccine candidates: a 6-valent, a 26-valent, 
a 30-valent (all N-terminal) and a conserved C-repeat 
region M protein vaccine [271–274]. The 6-valent vac-
cine provided the first evidence in humans that hybrid 
fusion M protein is a feasible strategy [271]. The 26- 
valent [272] and 30-valent [273] vaccine expanded the 
technique and the C-repeat region vaccine showed that 
immunity against more conserved regions of the 
M protein is possible and safe [274].

In the non-M protein based arena, the Combo5 
vaccine uses antigens SLO, SpyCEP, ScpA, arginine 
deiminase (ADI), and TF. It has been tested in the 
NHP-model, where antibody responses against all anti-
gens were detected in serum and immunized NHPs 
showed a reduction in pharyngitis and tonsillitis 
[275]. Another non-M protein vaccine candidate 
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named VAX-A1 uses modified GAC conjugated to 
SpyAD in combination with SLO and ScpA [276]. 
This has been developed further using non-native 
amino acid click-chemistry to conjugate GAC to SLO 
which successfully generated functional antibodies and 
protected mice against systemic GAS challenge [277]. 
The TeeVax vaccine candidate focus on T-antigens [97] 
and GlaxoSmithKline/GVGH has a non-M protein 
combination vaccine consisting of SpyCEP, SLO, 
SpyAD recombinant proteins and native GAC conju-
gated to a carrier protein [278].

Immunization to the conserved (J8) region of the 
M protein and to the superantigen SpeC protect mice 
against STSS [279]. Also, passive immunotherapy with 
antibodies to J8 could resolve established disease, which 
could be further enhanced by addition of SpeC 
antibodies.

An opsonophagocytic killing assay has been devel-
oped to measure serum protection against GAS without 
fresh neutrophils and complement, to reduce donor 
variability [280]. The assay utilizes human promyelocy-
tic leukemia cells as a source of neutrophils and baby 
rabbit complement, giving the model a potential to 
provide a robust and reproducible platform to acceler-
ate vaccine development. However, an opsonophagocy-
tosis assay alone might be inadequate to understand 
protection after GAS vaccination, particularly consider-
ing protection from immune evasion factors [281]. 
A recent advancement has been the development of 
the human infection model of pharyngitis [282]. 
During 2018–2019 a total of 25 healthy adults were 
challenged with GAS and pharyngitis was diagnosed 
in 85% at the starting dose level (1-3×10^5 CFU/mL). 
Antibiotic treatment was started at diagnosis of phar-
yngitis or at 5 days post-challenge. This model can be 
used to establish immune correlates for protection to 
help vaccine development.

Outlook

GAS produces a broad repertoire of virulence factors, 
and we are getting closer to answering which of them 
are key to driving pathogenesis. However, this repre-
sents a race against the clock, since new strains arise 
and the molecular evolutionary events transpiring in 
just one bacterial cell can ultimately spread and pro-
duce millions of human infections worldwide [57]. 
During the initial year of the COVID-19 pandemic, 
invasive GAS infections decreased rapidly, showing 
that protection against disease is possible. Today 
though, invasive GAS disease is back, and we are seeing 
record-breaking numbers of infections in many coun-
tries, a critical opportunity to conduct patient-based 

research. When clinical awareness is high, and all avail-
able therapy is given, mortality in NSTI is still around 
18% and the amputation rate is 22% [18]. There is 
a substantial burden of invasive GAS disease in preg-
nancy and young children in low-income countries [24] 
and 319,000 people die from RHD every year [12]. 
With new drugs, this could decrease, but the threat of 
antibiotic resistance is approaching and becoming real 
among additional streptococcal pathogens, indicating 
that clinical outcomes could actually deteriorate. For 
example, centers located in high clindamycin-resistant 
areas may be advised to adjust to linezolid as adjunctive 
treatment in NSTI. The future threat of β-lactam resis-
tant GAS exists, but is balanced by the advances in 
vaccine development. Increasing numbers of potential 
therapeutics and vaccines are in the pipeline, yet while 
waiting, we should aim to reduce barriers to access 
primary healthcare [283].
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A1 Appendix

Table A1. GAS virulence factors.
Virulence factor Figure References

M protein 1, 2 [45,76,108,109,127,128,132,134,135,195,274,284]
HA capsule 1, 2 [48,83,86,87,113,171–173,285]
Fibronectin-binding protein 2 [201]
Collagen-binding protein 2
SLO 1, 2 [48,114,129,130,179–181]
SLS 1, 2 [182,183,185]
SpeA 1, 2 [64,75,187–190,192,193]
SpeB 1, 2 [71,88,160–164,166–168]
SpeC, SpeD, SpeF, SpeG, SpeH, SpeJ, SpeK, SpeL, SpeM, SpeQ, SpeR, SSA [186]
SmeZ 2
SpyCEP 1, 2 [120–123]
ScpA 2 [124,125]
SpnA
Scl-1 2 [112]
Streptokinase 2 [151–153,155]
Sda1 2 [110,111]
Spd1 2
DNAse
NADase [130,286]
LTA
Fibronectin
GAC 2 [116,117]
SIC 1, 2 [164,174,175]
S protein [126]
IdeS 1 [140,141]
EndoS [142–144]
Alpha-enolase [154,164]
uPA [158,159]
SpyAD [91,92]
Sil [213]
Oxo-C12 [216]
Arginine deaminase
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