Supporting Information

Cowburn et al. 10.1073/pnas.1306942110

Fig. S1. Representative Western blots and densitometry analysis of hypoxia-inducible factor 1 alpha (HIF-1 α) (*Upper*) and HIF-2 α (*Lower*) stability in skin samples from K14cre-HIF2 α and K14cre-HIF-1 α mice, respectively, compared with WT controls. Densitometry data are stated as the ratio of target protein to β -actin and are shown as mean \pm SEM (n = 6).

Fig. 52. (A) Representative Western blots of arginase-I/-II, nitric oxide synthase 2 (NOS2)/3, and β -actin control basally expressed in the skin of K14cre-HIF1 α and -HIF2 α mice compared with littermate controls. (B) Baseline quantitative PCR (qPCR) analysis for NOS1 expression in skin samples from keratinocyte-specific HIF-1 α - and HIF-2 α -deleted mice compared to littermate controls. Data are shown as mean fold change \pm SEM (n = 8).

S A

C Murine vascular diameter

Fig. S3. (*A*) Representative photomicrographs of histological analysis for skin vascular density. Frozen 8- μ M skin sections were immunostained for PCAM-1 (CD31). ImageJ software (National Institutes of Health) was used for quantitative analysis to determine the percentage vessel density. (*B*) Baseline qPCR analysis for VEGF expression in skin samples from keratinocyte-specific HIF-1 α - and HIF-2 α -deleted mice compared with WT controls. Data are shown as mean fold change \pm SEM (n = 8). (C) Representative photomicrographs of histological analysis of vascular diameter. Frozen 8- μ M skin sections were immunostained for PCAM-1 (CD31). ImageJ software was used for quantitative analysis to determine the vessel cross-section.

AS PNAS

Fig. 54. Metabolic characterization of K14cre-HIF-1 α and K14cre-HIF-2 α . (*A* and *B*) Measurement of VO₂ and VCO₂ from resting K14cre-HIF-1 α (*A*) or K14cre-HIF-2 α (*B*) mice (data are shown as mean VO₂ or VCO₂ ± SEM in mL⁻¹·kg⁻¹·h⁻¹), respiratory exchange ration (RER) (data are shown as mean ratio ± SEM), and metabolic heat production (data are shown as mean Kcal⁻¹·kg⁻¹·h⁻¹ ± SEM) (n = 5). *P < 0.05, **P < 0.05. (C and D) Whole-body O₂ consumption (VO₂) in response to accumulating exercise stress. K14-HIF-1 α (n = 5) (C) or K14-HIF-2 α (n = 5) (D) mice were compared with littermate controls (n = 4). **P < 0.005, ANOVA. Data are shown as mean VO₂ ± SEM mL⁻¹·kg⁻¹·h⁻¹ accumulating with time as the intensity of the exercise increases.

Fig. 55. K14cre-VHL mice are hypothermic. (*A* and *B*) Skin-surface temperature was measured by a thermal infrared camera and expressed as average temperature (°C) \pm SEM (*n* = 8). (*C*) Basal core body temperature was measured using a rectal probe and expressed as average temperature (°C) \pm SEM (*n*=8). (*D*) Core body temperature was monitored during acclimation of K14cre-VHL mice to an environmental temperature of 4 °C compared with WT controls. Data are shown as the mean drop in core temperature (°C) \pm SEM following a 3-h exposure (*n* = 8). (*E*) Measurement of VO₂ and VCO₂ from resting K14cre-VHL mice. Data are shown as mean VO₂ or VCO₂ \pm SEM mL⁻¹·kg⁻¹·h⁻¹ metabolic heat production. Data are shown as mean Kcal⁻¹·kg⁻¹·h⁻¹ \pm SEM (*n* = 8). ***P* < 0.005.

Fig. S6. WT mice develop severe hypertension when Angiotensin II (2 $ug^{-1}kg^{-1}min^{-1}$) is infused over 14 d. Data are shown as mean (mmHg) ± SEM (n = 6).

Fig. S7. qPCR analysis of NOS1, NOS2, NOS3, and VEGF from skin samples collected from normotensive (open bar; n = 11) and mildly hypertensive (closed bar; n = 13) volunteers. Data are shown as mean fold change \pm SEM.

Blood components analyzed	K14-HIF-1α, range	Cre [−] , mean	Cre ⁺ , mean
Glucose, mg/dL	90–192	172.5	195.7
BUN, mg/dL	18–29	24	23.6
Creatinine, mg/dL	0.2–0.8	<0.2	<0.2
Albumin, g/dL	2.5–4.8	3.6	3.8
Globulin, g/dL	_	2	2
Total protein, g/dL	3.6–6.6	6.0	6.2
Sodium, mEg/L	126–182	149.6	151.75
Potassium, mWg/L	4.7-6.4	6.5	7.0
Calcium, mg/dL	5.9–9.4	10.1	10.1
Phosphorus, mg/dL	6.1–10.1	6.95	6.20
Bilirubin total, mg/dL	0.1–0.9	0.3	0.3
SGPT (ALT), U/L	28–132	42.75	42
Alk P, U/L	62–209	52	49
Amylase, U/L	1693,615	1,019	987

Table S1. Analysis of blood chemistry in K14cre-HIF1 α mice and littermate controls (n = 10)

Table S2. Data from normotensive and hypertensive human volunteers

PNAS PNAS

	Blood pressure at visit,							
Subject	Age, y	Sex	diastolic/systolic, mmHG	Hypertensive medication	Other medications			
1	46	F	144/71	Candesartan	Nil			
2	28	М	141/96	Losartan	Nil			
3	61	М	150/85	Perindopril, felodipine	Simvastatin, lanzoprazole			
4	67	М	169/82	Lisinopril, doxazosin	Nil			
5	48	М	142/89	Nil	Nil			
6	50	М	167/109	Nil	Nil			
7	62	М	173/94	Nil	Nil			
8	51	М	165/99	Ramipril, amiodipine	Nil			
9	65	F	173/98	Lisinopril	Latanoprost, Viscotears			
10	53	М	140/90	Candesartan	Simvastatin, aspirin			
11	51	F	159/96	Candesartan	Nil			
12	70	М	150/73	Nil	Simvastatin, aspirin			
13	68	F	133/66	Bendroflumethiazide	Pravastatin, diclofenac			
14	58	М	134/82	Amiodipine, atenolol	Simvastatin, aspirin			
15	56	М	173/105	Nil	Nil			
16	63	F	172/70	Lisinopril	Nil			
1	74	F	157/86	Nil	Aspirin			
2	60	F	147/84	Nil	Nil			
3	32	F	98/73	Nil	Nil			
4	51	М	124/71	Nil	Lanzoprazole, aspirin			
5	24	М	98/73	Nil	Nil			
6	49	F	105/57	Nil	Nil			
7	48	М	147/86	Nil	Nil			
8	47	F	116/72	Nil	Nil			
9	38	F	133/70	Nil	Nil			
10	56	М	138/83	Nil	Nil			
11	43	F	113/69	Nil	Nil			
12	59	F	123/67	Nil	Nil			
13	37	F	113/56	Nil	Nil			
14	54	F	106/67	Nil	Nil			
15	52	М	125/85	Nil	Nil			
16	52	М	119/70	Nil	Nil			
17	50	F	122/74	Nil	Nil			
18	49	М	139/91	Nil	Nil			
19	47	F	135/80	Nil	Nil			
20	48	М	150/86	Nil	Nil			
21	62	F	155/81	Nil	Nil			
22	52	F	114/58	Nil	Nil			
23	23	F	103/58	Nil	Nil			
24	61	М	143/76	Nil	Nil			