Supplementary Information

Observing the Invisible through Imaging Mass Spectrometry, a Window into the Metabolic Exchange Capacity of Microbes

David J. Gonzalez⁹*, Yuquan Xu¹*, Yu-Liang Yang¹*, Eduardo Esquenazi^{1,4}, Wei-Ting Liu², Anna Edlund⁴, Tram Duong¹, Liangcheng Du³, István Molnár⁸, William H. Gerwick⁴, Paul R. Jensen⁴, Michael Fischbach⁵, Chih-Chuang Liaw, Paul Straight⁴, Victor Nizet^{1,4,9}, Pieter C. Dorrestein^{1,2,4}

- 1. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
 - 2. Department of Chemistry and Biochemistry, University of California, San Diego
 - 3. Department of Chemistry, University of Nebraska-Lincoln, Lincoln
- 4. Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
 - 5. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
 - 6. Department of Biochemistry and Biophysics, Texas A&M University, College Station
 - 7. Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China Medical University, Taichung 404, Taiwan
 - 8. Natural Products Center, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ
 - 9. Department of Pediatrics, University of California, San Diego

To whom correspondence should be directed:

Prof. Pieter C. Dorrestein Skaggs School of Pharmacy and Pharmaceutical Sciences and Departments of Pharmacology, Chemistry and Biochemistry, Biomedical Science Building (BSB) Room 4090 9500 Gilman Drive, MC 0636 La Jolla, CA 92093-0636 Office: 858-534-6607 E-mail: pdorrest@ucsd.edu

*D. J. Gonzalez, Y. Xu and Y-L. Yang contributed equally to this study.

Contents

Supplementary Table 1: Growth conditions, MALDI signals, and references of the strains used in this study	3-8
Supplementary Figure 1: The IMS images of strains indicated in Supplementary Table 1	9-45
Supplementary Table 2: Characterization of named ions in this study	46-48
Supplementary Figure 2: The annotated known compounds observed by IMS	48-61

Supplementary Table 1 Growth conditions and MALDI signals of the strains used in this study. Column definitions: (i) Strains. Indicates the specific name of the organism used in the study. (ii) Medium. Indicates the specific medium used to grow the organism. (iii) Growth time. Indicates the growth time in days (d) of the organism before analysis. (iv) MALD-I mass range. Indicates the mass-to-charge (m/z) range monitored during data collection. (v) Mass-to-charge signals observed. Ions with spatial distributions either colony bound or released into the agar and had distinct patterns to the matrix peaks were recorded as ion candidates. (vi) Identified ions. Indicates ions that were structurally verified by tandem mass spectrometry including parent masses [M] and salt adducts [Na or K]. (vii) References. List of publications with information either on the specific strain used or the resolved molecules.

Strains	Medium	Growth	MALDI-I	m/z signals observed	The ions identified (SI-4)	References
		time	(m/z range)		annotated m/z signals	
Beauveria bassiana ATCC 7159	ISP-2	6d	(200-3700)	204, 217, 222, 231, 236, 242, 246, 258, 260, 274, 281, 370, 296, 397, 412, 428, 461, 477, 520, 522, 575, 577, 579, 591, 593, 597, 600, 613, 615, 617, 629, 631, 654, 656, 804, 807, 823, 932, 948	Beauvericin ([M+Na] ⁺ , 807; [M+K] ⁺ ,823), Bassianolide ([M+Na] ⁺ , 932; [M+K] ⁺ , 948)	Xu, 2009
	PDA	6d	(200-3400)	231, 393, 397, 412, 520, 577, 600, 656, 688, 767, 789, 807, 823, 932, 948		
Chaetomium chiversii CS- 36-62	ISP-2	5d	(200-1600)	404, 409, 490, 492, 505, 507, 530, 542, 546, 557, 562, 611, 633, 649, 667, 689, 705		Wang, 2009
	PDA	5d	(200-1600)	404, 409, 412, 486, 520, 542, 546, 404, 409, 490, 492, 505, 507, 530, 542, 546, 557, 562, 611, 633, 649, 667, 689, 705611, 633, 649, 667, 689, 705		
Fusarium verticillioides	ISP-2	5d	(300-3600)	664, 1311, 1327, 655, 677, 693		7hu 2008
5777	PDA	5d	(300-3600)	751, 760, 766, 893 1311, 1327, 655, 677, 693		Zhu, 2008
Fusarium sp CNI 292	ISP-2	5d	(350-3000)	412, 645, 647, 663, 673, 675, 691, 802, 609, 625		Belofeky 1999
Pusurium sp.CIAL 272	A1	5d	(350-1600)	412, 496, 562, 581, 595, 587, 609, 625		Del013ky, 1999
Acremonium sp. CNC890	ISP-2	5d	(300-3600)	515, 520, 531, 764, 780, 796		This study
neremonium sp. erreoso	A1	5d	(300-3600)	476, 750, 764, 766, 780, 796, 876		This study

Fusarium sp.CNC 477		ISP-2	5d	(200-3600)	258, 296, 493, 515, 531, 547		Renner 1998			
	A1 7d (350-1600)				493, 515, 531, 547, 747					
Thermofungus	C030813_30	PDA		(350-1600)	460, 476, 546,688, 739, 767, 842, 863, 881	This study				
Thermofungus	C030813_40	PDA		(350-1600)	445, 460, 589, 656, 672, 751, 767, 771, 786, 881					
Salinispora CNS205	arenicola	A1	15d	(350-1600)	354, 365, 447, 458, 497, 527, 540, 556, 655, 672, 729, 751, 767, 940	54, 365, 447, 458, 497, 527, 540, 556, 655, 672, 729, 51, 767, 940				
Salinispora	pacifica	A1	11d	(250-1600)	None		Jensen 2006			
CNS 143 Salinispora CNT 133	pacifica	A1	11d	(250-1600)	495	95				
Salinispora CNH 643	arenicola	A1	11d	(250-1600)	457, 467, 489, 556		This study			
Salinispora	arenicola	A1	11d	(250-1600)	354, 557		Asolkar 2009			
CNT 088 Actinomycete CNS 575		ISP-2	16d	(250-1600)	879, 901, 917	Etamycin of [M+H] +, 879; [M+Na]+, 901;	Haste 2010			
		A1	11d	(250-1600)	623, 901, 917	and [M+K]+, 917.				
Streptomyces s	p. SPB74	ISP-2	10d	(300-3600)	637, 682, 857, 877, 909, 1044, 1046, 1105	Oh 2009				
Streptomyces s	р. AA#4	ISP-2	7d	(300-3600)	655, 666, 682, 693, 720, 777, 877, 1059, 1073, 1089, 1102, 1111, 1182, 1354.	This study				
Streptomyces s	<i>p.</i> Mg1	ISP-2	8d	(300-3600)	668, 973, 1007, 1988, 1904, 1969, 1985, 2003	This study				
Streptomyces s	p. WASP	ISP-2	7d	(300-3600)	582, 618, 634, 656, 672, 705		This study			
S.coelicolor A	3(2)	ISP-2	8d	(300-3600)	424, 392, 394, 1536, 2027, 2065	392, 394, 1536, 2027, 2065 Prodiginines(392, 394), CDA(1536), sapB(2027, 2065)				
S. roseosporus	NRRL15998	ISP-2	8d	(300-3600)	799, 815, 831, 845, 848, 862, 864, 878, 893, 972, 2237,		Debono 1987			
S. h ATCC53653	ygroscopicus	<i>groscopicus</i> ISP-2 10d (300-3600) 2253 1038, 1060, 1076, 1102, 1118, 1136, 1462, 1 1548, 1562, 1573, 1587, 1601, 1615, 1629, 1		2253 1038, 1060, 1076, 1102, 1118, 1136, 1462, 1476, 1490, 1548, 1562, 1573, 1587, 1601, 1615, 1629, 1639, 1653,		Lam 1990				
S. albus J1074		ISP-2	9d	(300-3600)	1667 486, 655, 732, 950, 1061, 1077, 1093, 1109, 2266, 2282,		Lombó 2006			
S. ghanaensis 14672		ISP-2	7d	(300-3600)	Endler 1998					

<i>S. clavuligerus</i> ATCC 53653	ISP-2	9d	(300-3600)	2181, 2197, 2219, 2235		
S. roseosporus NRRL11379	ISP-2	11d	(300-3600)	1207, 1209, 1221, 1223, 1237, 1673, 1687, 1701, 1705, 1719, 1733, 1747, 1749, 2236, 2252		Huber 2005
S. pristinispiralis	ISP-2	8d	(300-3600)	641, 645, 650, 673, 711, 2014, 1036, 2052, 2074, 2090		This study
ATCC25486 S.viridochromogenes 40736	ISP-2	7d	(300-3600)	992, 1689. 1711, 1727, 2068, 2169		Blodgett 2005
Streptomyces sviceus 29083	ISP-2	7d	(300-3600)	1698, 1812, 1826, 1954, 1870, 1888, 1910, 1926, 1948, 1968, 1984, 2084, 2106, 2122, 2138, 2154		This study
Streptomyces sp. SPB 78	ISP-2	7d	(300-3600)	509, 540, 553, 587, 589, 2251, 2267, 2289, 2305		This study
Kutzneria sp. 744	ISP-2	7d	(300-3600)	867, 883, 888, 905, 907, 921, 923, 942, 944, 958, 960, 983, 998, 1065, 1073, 1087, 1089, 1103, 1131, 1133,		Broberg 2006
Actinoplanes	ISP-2	7d	(300-3600)	666, 682, 684, 893, 1189		This study
Streptoverticillium griseoverticillatum ATCC 31499	ISP-2	8d	(300-3600)	693, 709, 809, 1728, 1750, 1766, 2025, 2041, 2057, 2063, 2079, 2101, 2117, 2139, 2155	Cinnamycin ([M+H] +, 2041), [M+Na]+, 2063; [M+K]+,2079)	Kaletta 1991
Pseudomonas aeruginosa PAO	ISP-2	2d	(500-2000)	577, 591, 616, 625, 651, 740, 746, 756, 760, 770, 778, 794, 798, 808, 830, 714, 1334	Polyglutamate (714),	Meyer 1996
Staphylococcus aureus USA300	ISP-2	2d	(300-3600)	537, 551, 565,594, 748, 762, 775, 785, 797, 799, 804, 814, 841, 886, 904, 916, 931, 941, 946, 957, 970, 974,	δ-toxin (3006)	Schlievert 2010
Nostoc sp. PCC 7120	BG-11	12d	(300-3600)	775, 871, 1013, 1338, 1500	Pheophytin A ([M+H]+, 871)	Dembitsky 2005
Lysobacter enzymogenes C3	ISP-2	4d	(300-3600)	571, 573, 587, 589, 1106, 1108, 1275, 1277, 1484, 1500, 1516, 1536, 1549, 1563, 1571, 1577, 1581, 1585, 1601, 1615, 1633, 1649, 1715, 1729, 1743, 1757, 1771, 1785, 1799, 1813, 511, 533, 549, 513, 535, 551	Maltophilin ([M+H] +, 511), [M+Na]+, 533; [M+K]+,549). Dihydromaltophilin ([M+H] +, 513), [M+Na]+, 535; [M+K]+,551)	Yu 2007
Bacillus subtilis 3610	ISP-2	2d	(300-3600)	655, 714, 1031, 1045, 1047, 1059, 1061, 1075, 1517, 1531, 1545	Polyglutamate (714), Surfactin(1075), Plipastatin (1545)	Yang 2009
Bacillus pumilus CNJ762	ISP-2	3d	(200-3800)	551, 616, 655, 844, 1051, 1059, 1073, 1087, 714, 1075, 1089, 1103, 1117	Polyglutamate (714), Surfactin (1075)	This study
	A1	5d	(300-3600)	1059, 1073, 1081, 1087, 1095, 1101, 1123, 1133, 1089, 1103, 1117		

Rhizobium leguminosarum S36	ISP-2	6d	(300-3600)	415, 563, 814, 843	This study
Pseudomonas fluorescens PFO-1	ISP-2	3d	(300-3600)	395, 428, 563, 575, 578, 585, 590, 592, 604, 616, 626, 648, 652, 664, 678, 680, 700, 715, 733, 743, 747, 761	This study
<i>Mycobacterium</i> smegmatis MC2 155 ISP-2	ISP-2	6d	(300-3600)	715, 1275, 1287, 1301	Billman-Jacobe 2002

References to accompany Supplementary Table 1

Xu Y., Orozco R., Wijeratne E.M., Gunatilaka A.A., Stock S.P., Molnár I. Biosynthesis of the Cyclooligomer Depsipeptide Beauvericin, a Virulence Factor of the Entomopathogenic Fungus Beauveria bassiana. Chemistry & Biology 15, 898-907 (2008)

Xu Y., Orozco R., Wijeratne E.M., Espinosa-Artiles P., Gunatilaka A.A., Stock S.P., Molnár I. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology 46, 353-364 (2009)

Wang S., Xu Y., Maine E.A., Wijeratne E.M., Espinosa-Artiles P., Gunatilaka A.A., Molnár I. Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chemistry & Biology 15, 1328-1338 (2008)

Zhu X., Vogeler C., Du L. Functional complementation of fumonisin biosynthesis in FUM1-disrupted fusarium verticillioides by the AAL-toxin polyketide synthase gene ALT1 from Alternaria alternata f. sp. Lycopersici. J Nat Prod. 71, 957-960 (2008)

Belofsky G.N., Jensen P.R., Fenical W. Sansalvamide: A new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Letters 40, 2913-2916 (1999)

Renner M. K., Jensen P. R., and Fenical W. Neomangicols: Structures and Absolute Stereochemistries of Unprecedented Halogenated Sesterterpenes from a Marine Fungus of the Genus Fusarium. J. Org. Chem. 63, 8346–8354 (1998)

Schultz A.W., Oh D.C., Carney J.R, Williamson R.T., Udwary D.W., Jensen P.R., Gould S.J., Fenical W., Moore B.S. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc. 130, 4507-4516 (2008)

Jensen P. R., Mafnas C. Biogeography of the marine actinomycete Salinispora. Environmental Microbiology. 8, 1881-1888 (2006)

Asolkar R. N., Freel K.C., Jensen P.R., Fenical W., Kondratyuk T. P., Park E.-J., and Pezzuto J. M. Arenamides A–C, Cytotoxic NFκB Inhibitors from the Marine Actinomycete Salinispora arenicola. J Nat Prod. 27, 396-402 (2009)

Haste N.M., Perera V.R., Maloney K.N., Tran D.N., Jensen P., Fenical W., Nizet V., Hensler M.E. Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus. The Journal of Antibiotics. (2010)

Oh D.-C., Scott J.J., Currie C.R., Clardy J. Mycangimycin, a Polyene Peroxide from a Mutualist Streptomyces sp. Organic letters.11, 633-636. 2009

Yang Y.L., Xu Y., Straight P., Dorrestein P.C. Translating metabolic exchange with imaging mass spectrometry. Nature chemical biology. 5, 885-887. 2009

Debono M., BarnhartM., Carrell C. B., Hoffmann J. A., Occolowitz J. L., Abbott B. J., Fukuda D. S., Hamill R. L., Biemann K. & Herlihy, W. C. A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J Antibiot 40, 761–777. (1987).

Lam K.S., Hesler G.A., Mattei J.M., Mamber S.W., Forenza S., Tomita K. Himastatin, a new antitumor antibiotic from streptomyces hygroscopicus. 43, 956-960. (1990)

Lombó, F., A. Velasco, A. Castro, F. de la Calle, A. F. Braña, J. M. Sánchez-Puelles, C. Méndez, and J. A. Salas. Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomyces species. ChemBioChem. 7:366-376. (2006)

Endler K., Schuricht U., Hennig L., Welzel P., Holst U., Aretz W., Böttger D., Huber G. Exploratory Investigations into the Biosynthesis of the Antibiotic Moenomycin A. Tetrahedron Letters. 39, 13-16. (1998)

Huber F. M., Berry D. M., Pieper R. L., Tietz A. J. The synthesis of A21978C analogs byStreptomyces roseosporus cultivated under carbon limitation and fed fatty acids. Biotechnology Letters. 12, 789-792. (2005)

Blodgett J.A.V.,, Zhang J.K., and Metcalf W.W. Molecular Cloning, Sequence Analysis, and Heterologous Expression of the Phosphinothricin Tripeptide Biosynthetic Gene Cluster from Streptomyces viridochromogenes DSM 40736. Antimicrobial Agents and Chemotherapy. 49. 230-240. (2005)

Broberg A., Menkis A., Vasiliauskas R. Kutznerides 1–4, Depsipeptides from the Actinomycete Kutzneria sp. 744 Inhabiting Mycorrhizal Roots of Picea abies Seedlings. Journal of natrual products. 69, 97-102. (2006)

Kaletta C., Entian K.D., Jung G. Prepeptide sequence of cinnamycin (Ro 09-0198): the first structural gene of a duramycin-type lantibiotic. European journal of biochemistry. 199, 411-415. (1991)

Meyer J.M., Neely A., Stintzi A., Georges C., Holder I.A., Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infection and immunity. 64, 518-523. (1996)

Schlievert P.M., Strandberg K.L., Lin Y.-C., Peterson M.L., Pharm.D., Leung D.Y.M., Secreted virulence factor comparison between methicillinresistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis. The journal of allergy and clinical immunology. 125, 39-49. (2010)

Forni A.L., Kaplan E.L., Schlievert P.M., Roberts R.B. Clinical and microbiological characteristics of severe group A streptococcus infections and streptococcal toxic shock syndrome. Clinical infectious diseases. 21, 333-340. (1995)

Dembitsky V.M., Rezanka T. Metabolites produced by nitrogen-fixing Nostoc species. Folia microbiologica. 50, 363-391. (2005)

Yu F., Zaleta-Rivera K., Zhu X., Huffman J., Millet J.C., Harris S.D., Yuen G., Li X., & Du L. Structure and Biosynthesis of Heat-Stable Antifungal Factor (HSAF), a Broad-Spectrum Antimycotic with a Novel Mode of Action. Antimicrob Agents Chemother 51, 64–72 (2007).

Billman-Jacobe, H., McConville, M.J., Haites, R. E., Kovacevic, S., Coppel, R. L. Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of *Mycobacterium smegmatis*. Molecular Microbiology 33, 1244-1253 (2002)

Supplementary Figure 1. The IMS images of strains indicated in Supplementary Table 1.

IMS 1. Beauveria bassiana grown on ISP-2 media. The ion at 806 Da was identified to be the [M+Na] of Beauvericin by tandem mass spectrometry (Supplemental Figure 2). IMS did not detect the [M+H] ion corresponding to Beauvericin. Liquid-liquid extraction of the organism showed the presence of the [M+H] that was resolved at 3.8 ppm mass error by FTICR-MS. Liquid-liquid extraction showed the presence of the [M+K] at 7.8 ppm mass error. The ion at 932 Da was identified to be the [M+Na] of Bassianolide by tandem mass spectrometry (Supplemental Figure 2).

Beauveria bassiana ATCC 7159 on PDA

IMS 2. Beauveria bassiana grown on ISP-2 media. The ion at 806 Da was identified to be the [M+Na] of Beauvericin by tandem mass spectrometry (Supplemental Figure 2). IMS did not detect the [M+H] ion corresponding to Beauvericin. Liquid-liquid extraction of the organism showed the presence of the [M+H] that was resolved at 3.8 ppm mass error by FTICR-MS. Additionally, the liquid-liquid extraction showed the presence of the [M+K] at 7.8 ppm mass error. The ion at 932 Da was identified to be the [M+Na] of Bassianolide by tandem mass spectrometry (Supplemental Figure 2).

IMS 3. Chaetomium chiversii grown on ISP-2 media.

IMS 4. Fusarium verticillioides grown on ISP-2 media (top) and PDA media (bottom).

IMS 5. Fusarium sp. CNL292 grown on ISP-2 media (top) and A1 media (bottom).

IMS 6. Acremonium sp. CNC890 grown on ISP-2 media (top) and A1 media (bottom).

IMS 7. Fusarium sp. CNC477 grown on ISP-2 media (top) and A1 media (bottom).

IMS 8. Thermo-fungus grown on PDA media.

Salinispora arenicola CNS205 on A1

IMS 9. Salinispora arenicola CNS205 grown on A1 media.

Salinispora pacifica CNT 133 on A1

Salinispora arenicola CNH 643 on A1

Salinispora arenicola CNT 088 on A1

IMS 10. Salinispora pacifica CNT 133 grown on A1 media (top). Salinispora arenicola CNH 643 grown on A1 media (middle). Salinispora arenicola CNT 088 grown on A1 media.

IMS 11. Actinomycete CNS 575 grown on ISP-2 media. The ion at 879 Da was identified to be the [M+H] of Etamycin by tandem mass spectrometry and FTICR-MS analysis of the intact mass (Supplemental Figure 2).

Streptomyces sp. SPB74 on ISP-2 637 682 857 877 0

IMS 12. Streptomyces sp. SPB74 grown on ISP-2 media.

IMS 13. Streptomyces sp. AA#4 grown on ISP-2 media.

IMS 14. Streptomyces sp. Mg1 grown on ISP-2 media.

IMS 15. Streptomyces sp. WASP grown on ISP-2 media.

IMS 16. Streptomyces coelicolor grown on ISP-2 media. The ion at 392 Da was identified to be the [M+H] of Streptorubin B by tandem mass spectrometry (Supplemental Figure 2). The ion at 1536 Da was identified to be the [M+K] of CDA (Supplemental Figure 2). IMS did not detect the [M+H] ion corresponding to CDA. Liquid-liquid extraction of the organism showed the presence of the [M+H] CDA ion that was resolved at 17.5 ppm mass error by MALDI-MS. Additionally, the liquid-liquid extraction showed the presence of the [M+K] at 6.5 ppm mass error.

Streptomyces roseosporus NRRL15998 on ISP-2

IMS 17. Streptomyces roseosporus grown on ISP-2 media.

Streptomyces hygroscopicus ATCC53653 on ISP-2

IMS 18. Streptomyces hygroscopicus grown on ISP-2 media.

IMS 19. Streptomyces albus grown on ISP-2 media.

IMS 20. Streptomyces ghanaensis grown on ISP-2 media.

S. clavuligerus ATCC 53653 on ISP2

IMS 21. Streptomyces clavuligerus grown on ISP-2 media.

Streptomyces pristinispiralis ATCC25486 on ISP-2

IMS 22. Streptomyces pristinispiralis grown on ISP-2 media.

Streptomyces viridochromogenes 40736 on ISP-2

IMS 23. Streptomyces viridochromogenes grown on ISP-2 media.

IMS 24. Streptomyces sviceus grown on ISP-2 media.

IMS 25. Streptomyces sp. SPB78 grown on ISP-2 media.

IMS 26. Kutzneria sp. 744 grown on ISP-2 media.

IMS 27. Actinoplanes teichomyceticus grown on ISP-2 media.

Streptoverticillium griseoverticillatum ATCC 31499 on ISP-2

IMS 28. Streptoverticillium griseoverticillatum on ISP-2 media. The ion at 2041 Da was identified to be the [M+H] of Cinnamycin by tandem mass spectrometry (Supplemental Figure 2).

Pseudomonas aeruginosa PAO on ISP-2

IMS 29. Pseudomonas aeruginosa grown on ISP-2 media.

Staphylococcus aureus USA300 on ISP-2

IMS 30. Staphylococcus aureus USA300 grown on ISP-2 media. The ion at 3006 was indentified to be δ -toxin (PSM λ) by tandem mass spectrometry.

IMS 31. Nostoc sp. grown on BG-11 media.

Lysobacter enzymogenes C3 on ISP-2

IMS 32. Lysobacter enzymogenes grown on ISP-2 media.

IMS 33. Bacillus subtilis grown on ISP-2 media. The ion at 1075 Da was identified to be the [M+K] of Surfactin by tandem mass spectrometry. IMS did not detect the [M+H] (Supplemental Figure 2). The ion at 1545 Da was identified to be the [M+K] of Plipastatin by tandem mass spectrometry. IMS did not detect the [M+H] (Supplemental Figure 2).

IMS 34. Bacillus pumilus grown on ISP-2 media. The ion at 1075 Da was identified to be the [M+K] of Surfactin by tandem mass spectrometry. IMS did not detect the [M+H] (Supplemental Figure 2).

Rhizobium leguminosarum S36 on ISP-2

IMS 35. Rhizobium leguminosarum grown on ISP-2 media.

Pseudomonas fluorescens PFO-1 on ISP-2

IMS 36. Pseudomonas fluorescens grown on ISP-2 media.

IMS 37. Mycobacterium smegmatis grown on ISP-2 media.

	Streptorubin B*	error ppm	Surfactin- C ₁₅ *	error ppm	CDA <u>*</u>	error ppm	Plipastatin-C ₁₇ -Val*	error ppm	error SapB <u>*</u>		Beauvericin	error ppm
Molecular formula	C ₂₅ H ₃₃ N ₃ O		C ₅₃ H ₉₃ N ₇ O ₁₃		C ₆₇ H ₇₈ N ₁₄ O ₂₆		C ₇₅ H ₁₁₆ N ₁₂ O ₂₀		$C_{84}H_{139}N_{25}O_{29}S_2$		$C_{45}H_{57}N_3O_9$	
Calcd. [M+H] [⁺]	392.2702		1036.6910		1497.5290		1505.8507		2026.9690		784.4173	
Calcd. [M+K]⁺	430.2261		1074.6468		1536.4849		1543.8066		2064.9249		822.3732	
Calcd. [M+Na]⁺	414.2521		1058.6729		1519.5109		1527.8327		2048.9510		806.3993	
Found w/ MALDI [M+H] ⁺	392.2720	4.6	ND		1497.5029	17.5	ND		2026.9706	0.8	ND	
Found w/ MALDI [M+K] ⁺			1074.6710	22.5	1536.4749	6.5	1543.8571	32.7	2064.9165	4.1		
Found w/ MALDI [M+Na] $^{+}$			1058.6765	3.4	1519.4967	9.4	1527.8605	18.2				
Found w/ FTMS [M+H] [⁺]	392.2698	1.0			1497.5316	1.7	1505.8563	3.7			784.4203	3.8
Found w/ FTMS [M+K]⁺			1074.6469	0.1							822.3754	2.7
Found w/ FTMS [M+Na] [⁺]											806.4056	7.8
MS2	TOFTOF		TOFTOF		TOFTOF		TOFTOF		TOFTOF		ITMS2	
Representive in imaging	392		1075		1536		1545		2027		806	

Supplementary Table 2 Characterization of named ions in this study.

	Bassianolide	error ppm	Etamycin	error ppm	Cinnamycin	error ppm	Maltophytin	error ppm	Dihydromaltophytin	error ppm	Pheophytin A	error ppm
Molecular formula	C ₄₈ H ₈₄ N ₄ O ₁₂		$C_{44}H_{62}N_8O_{11}$		$C_{89}H_{125}N_{25}O_{25}S_3$		C29H38N2O6		C29H40N2O6		$C_{55}H_{74}N_4O_5$	
Calcd. [M+H] [⁺]	909.6164		879.4616		2040.8519		511.2808		513.2965		871.5737	
Calcd. [M+K]⁺	947.5723		917.4175		2078.8078		549.2367		551.2523		909.5296	
Calcd. [M+Na] [⁺]	931.5983		901.4436		2062.8338		533.2628		535.2784		893.5557	
Found w/ MALDI $[M+H]^+$											871.5559	20.4
Found w/ MALDI $[M+K]^+$												
Found w/ MALDI [M+Na] [⁺]												
Found w/ FTMS [M+H] [⁺]	909.6212	5.3	879.4642	3.0	2040.8566	2.3	511.2819	2.2	513.2971	1.2		
Found w/ FTMS [M+K] [⁺]	947.5770	5.0	917.4245	7.6	2078.8156	3.8						
Found w/ FTMS [M+Na] [⁺]	931.6022	4.2	901.4495	6.5			533.2651	4.3	535.2804	3.7		
MS2	ITMS2		ITMS2		ITMS2		ITMS2		ITMS2		TOFTOF	
Representive in imaging	932		879		2041		511		513		871	

Supplementary Table 2. Characterization of named ions in this study (continued)

* <u>Described</u> in Yang Y.L., Xu Y., Straight P., Dorrestein P.C. Translating metabolic exchange with imaging mass spectrometry. Nature <u>C</u>hemical <u>B</u>iology. 5, 885-887. 2009

	δ-toxin	error ppm					
Molecular formula	$C_{137}H_{225}N_{33}O_{40}S$						
Calcd. [M+H] [⁺]	3005.6379						
Calcd. [M+K] [⁺]	3043.5938						
Calcd. [M+Na] [⁺]	3027.6199						
Found in MALDI [M+H] ⁺	3005.5007	45.6					
Found in MALDI $[M+K]^+$	3043.4419	49.9					
Found in MALDI [M+Na] [⁺]	3027.4771	47.2					
Found in FTMS [M+H] [⁺]							
Found in FTMS $[M+K]^{+}$							
Found in FTMS [M+Na] [⁺]							
MS2	TOFTOF						
Representive in imaging	3005						

Supplementary Table-2. Characterization of named ions in this study (continued)

Spectrum 1. Bassianolide. FTICR-MS was used to identify the [M+H] ion at 5.3 ppm mass error. Thereafter, tandem mass spectrometry using a LTQ-MS was performed to identify fragment ions. The number in brackets within the figures is the molecular mass of the compound.

Spectrum 2. Beauvericin. FTICR-MS was used to identify the [M+H] ion at 3.8 ppm mass error. Thereafter, tandem mass spectrometry using a LTQ-MS was performed to identify fragment ions. The number in brackets within the figures is the molecular mass of the compound.

Spectrum 3. Etamycin. FTICR-MS was used to identify the [M+H] ion at 3 ppm mass error. Thereafter, tandem mass spectrometry using a LTQ-MS was performed to identify fragment ions. Identified fragments are depicted in the structure insert. The number in brackets within the figures is the molecular mass of the compound.

Spectrum 4. Maltophytin. FTICR-MS was used to identify the [M+H] ion at 2.2 ppm mass error. Thereafter, tandem mass spectrometry using a LTQ-MS was performed to identify fragment ions. Structure insert depicts identified fragment ions. The number in brackets within the figures is the molecular mass of the compound.

Dihydromaltophytin (513)

Spectrum 5. Dihydromaltophytin. FTICR-MS was used to identify the [M+H] ion at 1.2 ppm mass error. Thereafter, tandem mass spectrometry using a LTQ-MS was performed to identify fragment ions. Structure insert depicts identified fragment ions. The number in brackets within the figures is the molecular mass of the compound.

Spectrum 6. Cinnamycin. FTICR-MS was used to identify the ion corresponding to Cinnamycin at 2.3 ppm mass error. Thereafter, tandem mass spectrometry using a LTQ-MS was performed to identify fragment ions as indicated on the spectrum. The number in brackets within the figures is the molecular mass of the compound.

Spectrum 7. δ -toxin. The ABI 4800 MALDI-TOF/TOF was used to identify the [M+H] ion at 45.6 ppm mass error. Thereafter, tandem mass spectrometry was performed to fragment the target ion. A sequence tag was generated as indicated within the spectrum and BLAST analysis was used to identify the ion as δ -toxin.

Spectrum 8. Pheophytin A. The ABI 4800 MALDI-TOF/TOF was used to identify the [M+H] ion at 20.4 ppm mass error. Thereafter, tandem mass spectrometry was performed to fragment the target ion. Ion fragments were identified and are indicated on the structure insert. The number in brackets within the figures is the molecular mass of the compound.

Spectrum 9. Streptorubin B. The ABI 4800 MALDI-TOF/TOF was used to identify the [M+H] ion at 4.6 ppm mass error and further verified with FTICR-MS at 1.0 ppm mass error. Thereafter, tandem mass spectrometry was performed to fragment the target ion. Ion fragments were identified and are indicated on the structure insert. The number in brackets within the figures is the molecular mass of the compound.

Spectrum 10. CDA. The ABI 4800 MALDI-TOF/TOF was used to identify the [M+H] ion at 17.5 ppm mass error and further verified with FTICR-MS at 1.7 ppm mass error. Thereafter, tandem mass spectrometry was performed to fragment the target ion. Ion fragments were identified and are indicated on the structure insert. The number in brackets within the figures is the molecular mass of the compound.