## **Supporting Information**

## Stewart et al. 10.1073/pnas.1606160113

| a.  |   |   |   |   |     |   | <i>b</i> . M | <i>b.</i> M1* <sup>1R</sup> |   |   |   |   |   |   |        | <i>с.</i> М1* <sup>2R</sup> |   |   |   |   |   |   |   |
|-----|---|---|---|---|-----|---|--------------|-----------------------------|---|---|---|---|---|---|--------|-----------------------------|---|---|---|---|---|---|---|
|     | а | b | С | d | е   | f | g            |                             | а | b | С | d | е | f | g      |                             | а | b | С | d | е | f | g |
| 134 |   |   |   |   | Е   | Κ | Е            | 134                         | V | К | Е | L | Е | Е | Κ      | 134                         |   |   |   |   | Е | Κ | Е |
| 137 | L | Е | Е | К | к   | Е | Α            | 141                         | V | Е | Α | L | E | L | А      | 137                         | V | Е | Е | L | к | Е | Α |
| 144 | L | Е |   |   |     | L | А            | 148                         | 1 | D | Q | A | s | R | D      | 144                         | V | E | L | L | 1 | D | Q |
| 148 | Т | D | Q | А | S   | R | D            | 155                         | Y | н | R |   | т | Α |        | 151                         | A | s | R | D | Y | н | R |
| 155 | Y |   |   |   |     | Н | R            | 160                         | v | k | _ |   |   |   | -<br>k | 158                         | V | т | Δ |   | F | ĸ | F |
| 158 | А | т | А | L | Е   | к | Е            | 102                         | v | N |   | L | E | E | ĸ      | 100                         | v |   | ~ | 5 | - |   | _ |
| 165 | 1 | F | F | ĸ | ĸ   | ĸ | Δ            | 169                         | V | K | Α | L | E | L | А      | 165                         | V | E | E | L | K | K | Α |
| 100 | 1 | 2 | - |   | IX. |   |              | 176                         | 1 | D | 0 | A | S | Q | D      | 172                         | V | E | L | L | 1 | D | Q |
| 172 | L | E |   |   |     | L | A            |                             |   | - |   |   |   | - | _      |                             |   |   |   |   |   |   | _ |
| 176 | 1 | D | Q | Α | S   | Q | D            | 183                         | Y | Ν | R | L | Ν | V | L      | 179                         | A | S | Q | D | Y | Ν | R |
| 183 | Y |   |   |   |     | Ν | R            | 190                         | V | К | Е |   |   |   |        | 186                         | V | Ν | V | L | Е | Κ | Е |
| 186 | А | Ν | V | L | Е   | к | Е            |                             |   |   |   |   |   |   |        |                             |   |   |   |   |   |   |   |

**Fig. S1.** Idealization of the B repeats. (A) Heptad positions of residues in the B repeats as predicted by Coils (12). Residues that correspond to register 1 are in red, and those that correspond to register 2 are in blue. (B) Sequence of  $M1^{*1R}$ , with idealizing mutations in black and depicted in register 1. Residues that contact Fg in register 2 are bolded and italicized. (C) Sequence of  $M1^{*2R}$ , with idealizing mutations in black and depicted in register 2. Residues that contact Fg in register 2 are bolded and italicized.



Fig. S2. Intradimer versus interdimer disulfide bond formation. Disulfide bond formation at 10-fold higher (0.5 mg/mL) or the same concentration (0.05 mg/mL) as in Fig. 4A, as assessed by nonreducing SDS/PAGE and visualized by Western blot using an anti-His antibody.



**Fig. S3.** Interaction with Fg. (A) Unbound proteins from Ni<sup>2+</sup>-NTA coprecipitation assay for interaction of His-tagged AB proteins with FgD, as shown in Fig. 4*B*. (*B*) Unbound proteins from Ni<sup>2+</sup>-NTA coprecipitation assay for interaction of His-tagged M1 proteins with FgD, as shown in Fig. 4*C*. (*C*) Ni<sup>2+</sup>-NTA agarose coprecipitation assay for interaction of His-tagged M1 proteins with FgD at 37 °C carried out in the presence of 2 M (*Left*) or 3 M (*Right*) urea. Bound FgD was assessed through Coomassie-stained SDS/PAGE. (*D*) Unbound proteins from Ni<sup>2+</sup>-NTA coprecipitation assay for interaction of His-tagged M1 proteins with FgD, as shown in Fig. 4*E*.



Fig. S4. AB\*<sup>2R</sup> is a structured protein. <sup>1</sup>H-<sup>15</sup>N HSQC spectra of (A) AB (B) and AB\*<sup>2R</sup> collected at 26 °C.



**Fig. S5.** Idealized M1 proteins on the GAS surface. (A) Surface expression of M1 protein by wild-type GAS 5448, GAS 5448 ( $\Delta emm1$ ) carrying an empty plasmid or plasmids encoding wild-type M1, register 1-stabilized M1, or register 2-stabilized M1, as assayed by FACS, using a polyclonal anti-M1 protein antibody. The values are the means of three triplicates normalized to GAS 5448, with the SD shown. (*B*) Binding of FITC-labeled Fg to the same strains as in *A* as assayed by FACS. The values are normalized to the value for GAS 5448, with the SD shown.

DNAS