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6Research Department, Lico Kaesemodel Institute (ILK), Curitiba, Paraná, Brazil
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SUMMARY
Although microglia are macrophages of the central nervous system, their involvement is not limited to immune functions. The roles of

microglia during development in humans remain poorly understood due to limited access to fetal tissue. To understand how microglia

can impact human neurodevelopment, the methyl-CpG binding protein 2 (MECP2) gene was knocked out in human microglia-like cells

(MGLs). Disruption of the MECP2 in MGLs led to transcriptional and functional perturbations, including impaired phagocytosis. The

co-culture of healthyMGLs withMECP2-knockout (KO) neurons rescued synaptogenesis defects, suggesting a microglial role in synapse

formation. A targeted drug screening identified ADH-503, a CD11b agonist, restored phagocytosis and synapse formation in spheroid-

MGL co-cultures, significantly improved disease progression, and increased survival in MeCP2-null mice. These results unveil a

MECP2-specific regulation of human microglial phagocytosis and identify a novel therapeutic treatment for MECP2-related conditions.
INTRODUCTION

Microglial cells originate from primitive hematopoiesis in

the yolk sac during embryogenesis (Alliot et al., 1999;

Ginhoux et al., 2010) and are the first glial cells appearing

in the brain, coinciding with the beginning of synapto-

genesis both in rodents and in humans (Kracht et al.,

2020; Menassa and Gomez-Nicola, 2018; Reemst et al.,

2016). Growing evidence supports that neuro-immune

crosstalk is crucial for brain development and function

(Cardona et al., 2006; Salter and Stevens, 2017). However,

due to limited in utero access, little is known about

the microglial contribution to healthy human brain

development.

Here, we generated microglia-like cells (MGLs) from

healthy human induced pluripotent stem cells (hiPSCs).

By comparing the transcriptional profile of MGLs to hu-

man primary fetal microglia (FM), we noticed that many

autism spectrum disorder (ASD)-related risk genes were ex-

pressed at similar levels between FM and MGL. Thus, we

hypothesized that human microglia, besides playing a

role in healthy neurodevelopment, could also be involved
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in conditions such as ASD, as previously suggested by

postmortem analyses (Gandal et al., 2018; Parikshak

et al., 2016).

We used induced pluripotent stem cell (iPSC) models to

functionally evaluate the impact of a well-known ASD-

risk genemethyl-CpG binding protein 2 (MECP2) loss of func-

tion. We and others have previously shown that human

andmouse neurons carryingmutantMECP2 had decreased

synaptogenesis, smaller soma size, reduced branching and

neurite length, and altered neuronal network activity

(Chao et al., 2007; Jiang et al., 2013; Kim et al., 2011; Mar-

chetto et al., 2010; McGraw et al., 2011). While the role of

MECP2 in neurons is well documented, animal studies

generated conflicting results regarding the contribution

of MECP2-mutant microglial cells to brain development

in male mice (Cronk et al., 2015; Derecki et al., 2012; Hori-

uchi et al., 2017; Jin et al., 2015; Maezawa and Jin, 2010;

Schafer et al., 2016; Wang et al., 2015; Zhao et al., 2017).

Here, we revealed non-cell-autonomous roles of micro-

glia in sculpting human synaptogenesis and neuronal con-

nectivity and identified a therapeutic candidate. Our

in vitro model will contribute to further determine the
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impact of microglia on the developing human brain and

help guide the discovery of new therapeutic alternatives

for neurodevelopmental disorders.
RESULTS

Characterization of hiPSC-derived MGLs

We previously reported an efficient protocol to generate

MGLs from iPSCs (Mesci et al., 2018) (Figure S1A), ex-

pressing classical microglial markers; CD68, CX3CR1,

TREM2, IBA1, PU.1, CD11b, and P2YR12 (Figure S1B).

Our MGLs closely recapitulated the transcriptomic signa-

ture of human primary FM at the level of both microglial

transcriptional and homeostatic/activation factors (Fig-

ure S1C and Table S2). MGLs clustered closely with FM

compared to iPSC-derived neurons and astrocytes

(Figures S1D, S1E, and Table S2). MGLs highly expressed

microglial genes, and at a lesser but similar fashion to

FM, genes typically expressed by hematopoietic stem

cells, primitive hematopoietic progenitor cells, erythro-

myeloid precursors, but did not express the negatively

associated genes such as MS4A1, NCAM1, CD3G, and

CD19 (Figure S1F and Table S2). As we hypothesized

that microglial cells could play a role in neurodevelop-

ment, we compared the expression of several ASD-related

genes between MGL and FM. Out of 11 ASD-related genes

displayed in Figure S1G, only PTEN, MEF2C, and TSC1

had statistically different expressions between MGL and

FM, but the rest of the genes did not have a statistically

different expression between MGL and FM. Therefore,

we concluded that MGL and FM showed similar expres-

sion levels of ASD-related genes (Figure S1G, see

Table S2 for the full list of ASD-related genes and their

expression levels in MGL vs. FM).
The absence of MECP2 in MGLs leads to decreased cell

viability and morphological and transcriptional

changes

Given that MGL and FM revealed similar expression levels

of ASD-related genes, we next wondered how MGLs could

affect neurodevelopment. We chose to use a model of

neuronal development perturbation by taking advantage

of the similarities we observed between FM and MGL

regarding the expression of several ASD-related genes.

MECP2 is an important gene for neural development,

implicated in ASD and several other human conditions

(Beyer et al., 2002; Chahrour et al., 2008; Cheung et al.,

2011; Colantuoni et al., 2001; Guy et al., 2001; Kim

et al., 2011; Lioy et al., 2011; Na et al., 2013; Schafer

and Stevens, 2015; Sharma et al., 2019; Suter et al.,

2014; Tillotson and Bird, 2020; Van den Veyver and

Zoghbi, 2000; Ylisaukko-Oja et al., 2005). Still, the impact
of MECP2 mutations in human microglia during develop-

ment remains debatable.

We selected patient-derived iPSC lines that lacked the

MECP2 protein, denoted as knockout (‘‘KO’’), and gener-

ated isogenic CRISPR-corrected rescue lines by restoring

the mutation, noted as ‘‘KOR’’ (Figure S2A). We also

included cell lines obtained from healthy donors (con-

trols), indicated as ‘‘CTRL’’ (see Table S1). All cell lines

have been previously characterized and published by

our laboratory and others (Marchetto et al., 2010; Muotri

et al., 2010; Nageshappa et al., 2016; Russo et al., 2018;

Sharma et al., 2019; Trujillo et al., 2018; 2021; Zhang

et al., 2016) (see experimental procedures). We confirmed

by immunofluorescence that MGLs expressed MECP2

and then verified the loss of the protein in MGL KO

lines and its re-expression on the KOR MGLs

(Figures 1A and S2B).

During MGL differentiation, we observed a period of

significant latency in the generation of viable KO pre-

MGL, occurring from day 24 to day 29 (Figure 1B), which

later caught up with the CTRL and KOR MGLs. This effect

was linked to a lack of functional MECP2 since KOR lines

did not differ from CTRL MGLs in the generation of

MGLs (Figure 1B). Pre-MGLs generated from CTRL, KO,

and KOR lines isolated from the media in suspension

were then further differentiated into MGLs (Figures 1C

and S2C), and their morphology was classified into three

groups: round, elongated, or cell clumps (Figure 1D). In

the absence of any external stimuli, both CTRL and

KOR MGLs generated approximately 60% elongated

shaped cells, 35% round cells, and around 5% clumped

cells (Figures 1E–1G), while KO MGLs generated about

50% of elongated shaped and 40% of round-shaped

cells (Figures 1E–1G), suggesting the absence of MECP2

decreases the number of elongated cells. Also, KO

MGLs exhibited a smaller surface area compared to

CTRL or KOR MGLs (Figure 1H). Alterations in

morphology were attributable to the absence of MeCP2,

as KOR and CTRL MGLs surface areas were indistinguish-

able (Figures 1E–1H).

Next, we applied a targeted multiplex transcriptomic

analysis using Human Myeloid Innate Immunity Panel

gene expression array (NanoString Technologies), which

includes 770 genes from 19 different pathways and pro-

cesses (Butovsky et al., 2014) (Figures 1I, S2D, and

Table S3). We confirmed that KOR lines re-expressing the

MECP2 protein clustered tightly with CTRL MGL lines,

confirming observed gene expression changes were

linked to the loss of MECP2 (Figures 1A and 1I). Compared

to CTRL and KOR MGL lines, 39 genes were differentially

expressed in KO MGL lines (Figures 1I and S2D). We

identified the top canonical pathways related to the CNS

to be phagosome formation, integrin signaling, Fcg
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receptor-mediated phagocytosis in macrophages and

monocytes (Figure S2E), neuroinflammation (Figure S2F),

axonal guidance, TREM1 signaling, complement system,

and actin cytoskeleton signaling pathways (Figure 1J).

Themolecular network analyses showed reciprocal interac-

tions between most dysregulated genes in KO MGLs, sug-

gesting converging molecular pathways (Figures 1J–1L),

including cell movement, cell-to-cell signaling, and cell

adhesion (Figure 1L).

To detect additional pathway alterations caused by

MECP2 loss beyond targeted myeloid genes and function

transcriptomics, we further performed unbiased high-

throughput messenger RNA sequencing (RNA-seq) on

CTRL, KOR, and KO MGLs (Figures S2G–S2K, and

Table S3). These global transcriptome analyses revealed

2,513 differentially expressed genes with a p value <0.05

and a fold change greater than 1.25 (Figure S2J). Four genes

were identified in common between the two transcrip-

tomic analyses: COL1A2, ITGAX, PTGS1, and TNC.

COL1A2 and TNC were upregulated in targeted and untar-

geted transcriptome analyses, as well as shared canonical

pathways, such as integrin signaling, actin cytoskeleton

signaling, phagosome formation, and Fcg receptor-medi-

ated phagocytosis in macrophages and monocytes

(Figures 1I, 1J, and S2I). Several other gene families

belonging to the complement system, cathepsins, chemo-

kine signaling, SIGLECs, and ER-phagosome formation

were also found to be dysregulated between KO and

CTRL/KOR MGLs (Figure S2K). Collectively, our transcrip-
Figure 1. The absence of MECP2 leads to decreased cell viability
formation pathways in MGLs
(A) Representative images of CTRL, KO, and KOR MGLs stained with C
(B) The percentage of cell viability was compared between different
Significance was tested using a two-way ANOVA with the Tukey’s multi
respectively) (three lines for CTRL MGLs and KO and two isogenic rescu
at each time point).
(C) Bright-field images of CTRL, KO, and KOR MGLs at day 7 of differe
(D) Bright-field images of CTRL MGLs with (right) or without (left) mas
(in red), scale bar 200 mm.
(E–H) Percentage of round cells, elongated cells, and cell clumps, resp
and KOR. One-way ANOVA with the Tukey’s multiple comparison test
respectively, for *p = 0.0149 and **p = 0.0021 for H (Each bar show
isogenic pairs, two different clones for CTRL with three independent
(I) Heatmap showing the 39 differentially expressed genes (greater
dependent cell lines, two to three biological replicates, CTRL n = 5 fro
KOR n = 3 from two independent cell lines, one to two independent e
using Rosalind onramp software, see supplemental information, meth
in red while decreasing ones are in blue.
(J) Top canonical pathways were obtained with 39 differentially expr
significance was calculated by the right-tailed Fisher’s exact test (p <
(K) The top network involving the majority of DEG obtained through I
in red.
(L) Top 5 diseases and biological functions were obtained with IPA.
tomic analyses provided converging evidence that the

loss of MECP2 alters phagocytosis pathways.

MECP2 chromatin immunoprecipitation sequencing

and proteomic assays on MGL

To assess whetherMECP2 could directly regulatemicroglial

function by occupying target genes or their promoters, we

performed a MECP2 chromatin immunoprecipitation

sequencing assay (MECP2 ChIP-seq) on KOR and CTRL

MGLs (Figures 2A–2G, S3A–S3C, and Table S4). As a nega-

tive control, we used KOMGLs andwere unable to generate

sequencing libraries due to the absence of MECP2 protein

and/or binding. We found over 120,000 MECP2 occupa-

tion sites genome-wide on both KOR and CTRL MGL sam-

ples, as previously observed by others (Rube et al., 2016;

Skene et al., 2010). Focusing on common MECP2 occupa-

tion sites between KOR andCTRLMGL samples (Figure 2B),

58,521 sites were identified, themajority located in introns

and intergenic regions (Figures 2C, and Table S4). We hy-

pothesized that sites on promoter regions would predict

potential MECP2 downstream targets that regulate micro-

glial functions. Such promoter-transcription starting site

(TSS) regions represent 4,069 (6.95%) of the total MECP2

sites found in bothMGL samples (Figure 2C). Among these,

seven geneswere shared in commonwith the targeted tran-

scriptomics (FLNB, ITGAM, LAPTM5, PDGFRA, PIK3CG,

PPARG, and PTGS1), and 653 genes overlapped with our

untargeted RNA-seq (Table S4). Top canonical pathways ob-

tained from genes in which MECP2 protein occupied
and dysregulations in cell migration, integrin, and phagosome

D68 and MeCP2 antibodies. Scale bar 10 mm.
cell lines. Each data point shows the mean ± SEM, as indicated.

ple comparison test (*p = 0.0304 and *p = 0.0247 for day 24 and 29,
e lines for KOR MGLs, n = 3 independent experiments for each sample

ntiation, scale bar 200 mm.
ks that marked round (in green), elongated (in blue), or cell clumps

ectively. (H) Area fold change compared to the control of CTRL, KO,
was performed (*p = 0.0323, **p = 0.0022, and n.s. for E to G,
s the mean ± SEM, each dot represents one sample, two different
experiments per sample).
than 1.25-fold) between these two groups (KO n = 5 from two in-
m two independent cell lines, two to three biological replicates and
xperiments p < 0.05, data were analyzed for statistical significance
ods’ section). Increasing fold changes compared to CTRL are marked

essed genes (DEGs) using Ingenuity Pathway Analysis (IPA), where
0.05).
PA, genes that are downregulated are in green and upregulated are
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promoter regions included several previously revealed

pathways from transcriptomics, including integrin

signaling, Fcg receptor-mediated phagocytosis in macro-

phages and monocytes, TREM1 signaling, complement

system, neuroinflammation signaling pathway, and actin

cytoskeleton signaling (Figure 2D). From the catalog of pro-

moter-TSS occupation sites, MECP2 occupied the promoter

region of two microglial marker genes (P2RY12 and

OLFML3), several chemokines, and their receptors

(CXCL3, CCR5, CXCR2, CCR3, and CCL13), and CYBB—a

gene involved in the generation of reactive oxygen species

(ROS). MECP2 also occupied the promoter region of genes

that belong to the complement system (CD93, C1QA,

C1QB. C1QTNF5, C1QTNF6, C2, C3, and C9) and to the

immunoregulatory receptors related to microglial engulf-

ment (SIGLEC5, SIGLEC7, and SIGLEC14). Finally, MECP2

occupied the promoter of genes involved in the phagocy-

tosis process (AXL, ITGAM, ITGA4, and MRC1) (Figure 2E).

We found several known ‘‘binding’’ motifs: CTCF (Barski

et al., 2007) (Homer), BORIS (Zf) (GSE32465, Homer),

PU.1 (ETS) (GSE21512, Homer), SpiB (ETS) (GSE56857,

Homer), and ELF5 (ETS) (GSE30407, Homer), but also

discovered de novo motifs: SpiB (ETS) (GSE56857, Homer),

BORIS (Zf) (GSE32465, Homer), STAT5 (Stat) (GSE12346,

Homer), PB0057.1Rxa_1 (Jaspar), and FOS::Jun (Jaspar)

(Figures 2F and 2G).

As a final tool to complete our search for microglial cell

pathways altered upon loss of MECP2, we conducted a la-

bel-free liquid chromatography-mass spectrometry (LC-

MS) proteomic analysis on CTRL, KO, and KOR MGLs

(Figures 2H, 2I, S3D–S3G, and Table S4), once again picking

up pathways shared in commonwith targeted or bulk tran-

scriptomics and as MECP2 ChIP-seq (Figure S3D). There

were 473 targets revealed by proteomics in which MECP2

was found to occupy their promoter, pointing to canonical

pathways, including phagosome formation, integrin

signaling, phagosome maturation, and actin cytoskeleton

signaling pathways (Figures 2H, 2I, and S3D–S3G). We

noted several top causal networks having significant

Z score alterations (activated or inhibited), including integ-

rin, NCOR1, complement complex and pro-inflammatory

cytokines, and chemokines (Figure S3F). Top diseases and
Figure 2. MeCP2 chromatin immunoprecipitation sequencing and
(A) Explanatory schematic of CTRL, KOR, and KO MGLs regarding the r
(B) Venn diagram of MeCP2 occupation peaks between CTRL and KOR.
(C) Annotation distribution of MeCP2 target peaks.
(D) Top canonical pathways for the promoter-TSS region obtained usin
exact test (p < 0.05).
(E) A table highlighting several MECP2 targets of interest in the geno
(F and G) Top 5 known and de novo motifs obtained with MeCP2 ChIP
(H) LC-MS proteomic analyses conducted on MGL shows 480 overlapp
(I) Top canonical pathways of the intersecting candidates between p
bio-functions pointed toward engulfment, cell movement,

invasion, cytoplasm organization, and Alzheimer’s disease

annotations (Figure S3E) with Z scores mostly predicting a

decreased activation state. Both ITGAX and PTGS1 were

found at the intersection of the proteomic and transcrip-

tomic datasets (Figure S3G). Collectively, our multi-omics

results highlighted the phagocytosis, integrin signaling,

and actin cytoskeleton signaling pathways as potentially

disrupted due to the lack of MECP2 protein in microglia.

The absence of MECP2 leads to alterations in

microglial functions

Wenextmoved to the analysis ofmicroglial functions asso-

ciated with the converging molecular pathways found in

various datasets, such as cell movement, neuroinflamma-

tion, and phagocytosis, beginning by quantifying the

release of several factors by MGLs into the media. Gluta-

mate has been postulated to be a neurotoxic factor released

by microglial cells during diseased conditions (Mesci et al.,

2015). KOMGLs released twice asmuch glutamate as CTRL

or KOR MGLs (Figure 3A). KO MGLs also released three

times more ROS compared to CTRL and KOR MGLs (Fig-

ure 3B), validating our screening results of increased

NADPH oxidase 4 gene expression and MECP2 ChIP-seq

occupancy of the promoter of the CYBB gene encoding

NADPH oxidase 2 (Figures 1I and 2E). Microglia sense

and migrate toward chemoattractant molecules (Davalos

et al., 2005; Nimmerjahn et al., 2005), and pathways asso-

ciated with migration, cell invasion, and chemokine

signaling were identified in transcriptomic analyses. While

all three genotypes of microglia had similar chemotaxis in

response to ATP, KO MGLs had decreased chemotaxis in

response to fractalkine (CX3CL1) (Figure 3C), a neuronal

chemoattractant that binds CX3CR1 expressed on micro-

glial cells (Figure S1B). Microglia respond to inflammatory

stimuli by secreting cytokines and chemokines (Chhor

et al., 2013; Orihuela et al., 2016). Thus, wemeasured levels

of 26 cytokines and chemokines released by unstimulated

MGLs and those stimulated with pro-inflammatory

lipopolysaccharides (LPSs) and anti-inflammatory IL-4

(Figures 3D–3F and S4A). Globally, all three genotypes,

CTRL, KO, and KOR MGLs, have similar levels of cytokine
proteomic assays on MGL
ole of MeCP2.

g IPA, where significance was calculated by the right-tailed Fisher’s

me.
-seq in MGLs.
ing candidates with MeCP2 ChIP-seq in the promoter region.
roteomics and ChIP-seq obtained through IPA (p < 0.05).
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release into the media and respond similarly to both stim-

ulations. Upon activation with LPS, the majority of pro-in-

flammatory cytokines release was increased. In contrast,

the IL-4 stimulation had the opposite effect, suggesting

that the inflammatory response to LPS or IL-4 is indepen-

dent of MECP2 protein expression (Figures 3D–3F and

S4A). We only noted two exceptions between KO and con-

trol MGLs; LPS-stimulated KO MGLs released significantly

more Macrophage Inflammatory Protein-1 alpha (MIP-1

alpha) and less granulocyte-macrophage colony stimu-

lating factor (GM-CSF) compared to CTRL or KOR MGLs

(Figures 3D–3F), consistent with altered MGL chemotaxis

in the absence of MECP2 protein while the rest of the 26

analytes showed similar results, suggesting that MECP2

did not impact the overall immune response to LPS or

IL-4 in human MGLs in our experiments.

Dysregulated phagosome formation, phagocytosis,

phagosome maturation, integrin signaling, complement,

and actin cytoskeleton signaling pathways were identified

across all omics. Thus, we next focused on a crucial micro-

glial function: phagocytosis. CTRL and KOR MGLs had

similar levels of phagocytic engulfment of zymosan

particles, while KO MGLs showed decreased phagocytosis

(Figures 3G and 3H). Upon treatment with cytochalasin

D to inhibit actin polymerization, the engulfment of

zymosan particles was reduced, confirming a phagocytotic

process (Figures S4B–S4C). To confirm these data, we also

performed phagocytosis using pHrodo-red-conjugated hu-

man brain organoid-derived cellular fractions enriched in
Figure 3. KO MGLs have increased glutamate, and ROS release
response to LPS as CTRL and KOR MGL
(A) Glutamate release by MGLs. Bars represent mean ± SEM. Significan
test (*p = 0.0329, two different KO lines, one rescue line and two in
(B) Measurement of reactive oxygen species (ROS) released in the c
comparison test was used to assess the significance (****p < 0.0001).
KO MGLs and one isogenic rescue line with three independent experi
(C) Migration assays using transwell chambers using ATP or CXC3L1.
comparison test (*p = 0.0261), two independent cell lines for CTRL a
experiments per sample.
(D) Heatmap showing the means for each cytokine released in the c
concentration in the media in pg/mL), three independent CTRL and K
(E and F) MIP-1 alpha and GM-CSF released in the conditioned media
tested by one-way ANOVA with Tukey’s multiple comparison test (***
lines and two isogenic rescue lines were used). Bars represent mean
(G) Bright-field images of CTRL, KO, and KOR MGLs engulfing zymosan p
bar 200 mm. Blue is a live nuclear stain (Nucleo Blue).
(H) Phagocytosis percentage of zymosan particles compared to CTR
multiple comparison test (****p < 0.0001 and *p = 0.0289, two diffe
two independent CTRL MGL lines with three clones). Bars represent m
(I) Phagocytosis of pHrodo-conjugated brain organoid-derived syn
normalized to hour = 0 and to CTRL baseline phagocytosis using incuc
one control and one KO isogenic pair with 5 independent experiment
respectively).
synaptosomes (Figures 3I, S4B, and S4C). CTRL and KOR

efficiently phagocytosed synaptosomes similarly, while

KO MGLs engulfed 80% less compared to CTRL and KOR

(Figure 3I).

KOR/CTRL MGL rescues the synaptic defects when co-

cultured with KO neurons

Given that several keymicroglial functions such as efficient

phagocytosis were disrupted, we hypothesized that these

functional alterations could impact neuronal development

and connectivity. To address this question, we performed

hiPSC-derived neuron-MGL co-culture experiments (Fig-

ures 4 and S5A–S5K). The MGLs were pre-labeled with a

fluorescent membrane dye, PKH26, suitable for long-term

studies, and their presence in culturewasmonitored during

neuronal differentiation for 6–8 weeks (Figures 4A and 4B).

As expected, the presence of IL-34 and macrophage colony

stimulating factor (M-CSF) in the media did not alter the

synaptogenesis (Figures S5D–S5E), as these ligands only

bind to CSF1R, which is highly expressed by MGLs rather

than neurons (Figure S5C). After 8 weeks of co-culture,

the number of functional synapses defined as colocaliza-

tion of pre- and post-synaptic proteins (= colocalized syn-

aptic puncta, CSP) was counted (Figures 4C, 4D, S5D, and

S5E). As we previously showed (Marchetto et al., 2010),

MECP2 KO neurons displayed 50% less CSP compared to

CTRL and KOR neurons (Figures 4C, 4D, S5D, and S5E).

Adding CTRL MGLs onto CTRL neurons significantly

increased the number of CSP (Figures 4C, 4D, and
decreased phagocytosis but the globally similar inflammatory

ce was tested by one-way ANOVA with Tukey’s multiple comparison
dependent CTRL MGL lines with two clones).
onditioned media by MGLs. One-way ANOVA with Tukey’s multiple
Bars represent mean ± SEM. Two independent cell lines for CTRL and
ments per sample were used.
Significance was tested by one-way ANOVA with Tukey’s multiple
nd KO MGLs, and one isogenic rescue line with three independent

onditioned media for a given genotype (blue to red, low to high
O MGL lines and two isogenic rescue lines were used.
by MGLs was measured, respectively (in pg/mL). Significance was
*p < 0.0001 and *p = 0.0179, three independent CTRL and KO MGL
± SD.
articles. Once engulfed, the zymosan particles fluoresce in red, scale

L MGLs. Significance was tested by one-way ANOVA with Tukey’s
rent isogenic KO/KOR pairs, at least four biological replicates each,
ean ± SEM. Each dot represents one sample.
aptosomes-enriched fractions measured as red fluorescent area
yte. Significance was tested by one-way ANOVA (*p < 0.001) using
s each. Bars represent mean ± SEM. (*p = 0.0184 and *p = 0.0269,
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Figure 4. KOR or CTRL MGL rescues the synaptic defects of KO neurons in long-term co-culture experiments
(A) Bright-field images of neuron-MGL (labeled with long-term stable membrane stain PKH26 in red) co-culture on day 2 and 50 of neuronal
differentiation, scale bar 400 mm.
(B) Representative images of co-culture neurons (stained with MAP2 and HOMER1) and MGLs (stained with CD68) for 2 months. The last
panel shows a magnification of the square area shown. Note that MGL is nearby of MAP2+ neurons and synapses, scale bar 50 mm.
(C) Representative images of synaptic puncta co-localization with or without CTRL, KO, or KOR MGLs, scale bar 20 mm.
(D) Quantification of the number of synaptic puncta (KO vs. CTRL neurons without MGL **p = 0.0013; KO neurons without MGL vs. KO
neurons with CTRL MGLs **p = 0.0023; KO neurons with CTRL MGLs vs. KO neurons with KO MGLs ***p = 0.0007, one isogenic KO/KOR pair
[KOR results shown in Figure.S5d], and one CTRL MGL line was used [related to KO], synaptic puncta from 10 neurons were counted, the
experiment was run in two independent batches).
(E) Quantification of the number of co-localized synaptic puncta (CM, conditioned media from CTRL or KO MGLs) (*p = 0.0482 one isogenic
KO/KOR pair and one CTRL MGLs line was used, synaptic puncta from 10 neurons were counted).
(F) Quantification of the number of co-localized synaptic puncta without healthy human primary fibroblasts (Fibro), (**p = 0.0084, one
isogenic KO/KOR pair, and one CTRL MGLs line was used, synaptic puncta from 10 to 15 neurons were counted).
(G) Bright-field images of spheroids co-cultured with MGL (in red) before and after plating on MEA plates, scale bar 400 mm.
(H) Graph showing the spike rate compared to CTRL spheroids without any MGLs, recorded in 5 min emerging from spheroids with or
without CTRL or KOR MGLs. **p = 0.0021, *p = 0.0150, n.s. not significant, one isogenic rescue line and two different CTRL and KO lines
were used, two to three independent experiments per genotype were used. Significance is assessed by one-way ANOVA with Tukey’s
multiple comparison test for the experiments in D, E, F, and H (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). The number of
neurons counted for synaptic puncta is represented by one data point in each graph. All synaptic puncta quantification was calculated as a
percentage compared to CTRL neurons. Bars represent mean ± SEM.
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S5A–S5D). Importantly, adding CTRL or KOR MGLs onto

KO neurons rescued the synaptic defects, suggesting that

MECP2 re-expression in MGL is sufficient to rescue synap-

togenesis (Figures 4C, 4D, S5D, and S5E). While adding

CTRL/KOR MGL onto KO neurons rescued the CSP, neither

the number of branching points nor the neurite length

changed (Figures S5F–S5G). Although therewas an increase

in soma size of KO neurons upon addition of MGLs, this

result was not statistically significant (Figure S5G). To deter-

mine whether MGL-induced synaptogenesis required

physical contact of microglia with neurons or occurred

through secreted factors by microglial cells, we performed

synaptogenesis assays using CTRL or KO-conditioned me-

dia from MGLs (Figures 4E, S5H, and S5J). Adding CTRL

or KOMGL-conditionedmedia did not affect the CSP num-

ber in CTRL or KO neurons, suggesting that the effect of

MGLs on neurons is mediated by cell-to-cell interactions

(Figures 4E, S5H, and S5J). As a control, the addition of

healthy human primary fibroblasts did not affect synapto-

genesis, suggesting the results observed on neurons are mi-

croglia specific (Figures 4F, S5I, and S5K).

Finally, to assess if an increased synapse number trans-

lated into increased neuronal network activity, we per-

formed self-assembled 3D cortical spheroid-MGL co-cul-

tures (Figures 4G, 4H, and S5K–S5O), and we previously

showed that KO cortical spheroids had decreased syn-

chronized neuronal activity (Sharma et al., 2019). Adding

CTRL MGLs onto CTRL cortical spheroids significantly

increased the spike rate and the number of spikes, in

agreement with the observed increased number of CSP

(Figures 4G, 4H, and S5L–S5O). KO cortical spheroids

without MGLs had lower spiking rate compared to

CTRL spheroids with CTRL MGLs, but adding CTRL or

KOR MGLs increased their spiking rate, reverting this

phenotype (Figures 4G, 4H, and S5L–S5O). However,

adding CTRL or KOR MGLs onto CTRL, KOR, or KO

spheroids did not change the burst duration, number of

spikes per burst, number of active electrodes, or number

of bursts (Figure S5O). Collectively, our data revealed that

CTRL/KOR MGLs rescued the synaptic defects observed

in cortical neurons lacking MECP2, both at the level of

the number of CSP and neuronal activity (Figures 4G,

4H, and S5L–S5O).

ADH-503 restored phagocytosis in KO MGLs, synaptic

defects in KO neurons, improves disease course and

survival of MeCP2 KO mice

Next, we performed a therapeutic compound screening

to rescue that function and to help us understand the

mechanisms by which MECP2 controls phagocytosis

(Figures 3H, 3I, and S4C). We chose 8 compounds that

were either inhibitors or agonists of different integrin

and complement system that we previously identified
(Figures 2, 3, and 5A). Among these compounds, we iden-

tified ADH-503, a CD11b agonist, for which the gene en-

coding for CD11b, ITGAM, is one of the targets for MECP2

occupancy (Figures 2E, 5C, and 5D), that was able to

rescue the phagocytosis in KO MGL (Figure 5B). Next,

we treated KO spheroid-MGLs co-cultures with ADH-503

(Figures 5E and S5). ADH-503 treatment of KO spheroid

co-cultured with KO MGLs restored the synaptic defects

to similar levels as control spheroids co-cultured with

CTRL MGLs and KO spheroids co-cultured with CTRL

MGLs (Figures 5E and S5).

To assess the translational potential of this candidate

drug in vivo, we next used MeCP2-KO (Mecp2 tm1.1Jae)

mice (Derecki et al., 2012). In addition to developing dis-

ease phenotypes as observed with the hiPSC-derived

models and defects in microglial phagocytosis (Derecki

et al., 2012), these mice develop similar pathologies seen

in patients with Rett syndrome (RTT), including the ner-

vous system and peripheric symptoms (behavior, respira-

tory problems, premature aging/death, etc.) (RZ et al.,

2001). Therefore, we next treated MeCP2-KO mice starting

at 3 weeks of age daily by oral gavage with 120mg/kg ADH-

503, a dose (half-life of 4.68 and 3.95 h) and administration

route previously known to be safe (Panni et al., 2019a; Fig-

ure 5F). MeCP2-KO mice that received ADH-503 daily

showed slowed disease progression (Figure 5G) and, impor-

tantly, survived 40% longer than the ones that received the

vehicle treatment (Figure 5H). Finally, theMeCP2-KOmice

that were treated with ADH-503 had their soma size

rescued to the wild-type (WT) proportions (Figure 5I), sug-

gesting that ADH-503 had an impact on the CNS.
DISCUSSION

Our work provides direct experimental evidence that MGL

is causally involved in human synaptogenesis and neural

network establishment. Not only has microglial identity

been shown to be heavily defined by their neuronal envi-

ronment (Bennett and Bennett, 2020; Butovsky et al.,

2014; Reemst et al., 2016; Sellgren et al., 2019), but also

our results suggest that microglia impact the function

and maturation of neuronal cells in a human model,

revealing a previously underappreciated non-cell-autono-

mous role of microglia on neuronal connectivity and syn-

apse formation.

To further understand the contribution of human MGLs

to disease states, we took advantage of the similarities be-

tween FM and MGLs regarding the levels of ASD-related

gene expression. We observed morphological alterations

and a latency period in the MGL generation from KO

samples. Interestingly, a previous study reported that the

myeloid-specific transcriptional factor PU.1, which we
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also identified as one of the top 5 known binding motif

sites for microglial MECP2 in our ChIP-sequencing experi-

ments, directly interacts with MECP2 (Suzuki et al., 2003),

suggesting that MECP2 might also play a role during prim-

itive hematopoiesis.

Our multi-omics repeatedly showed that several micro-

glial functions, such as phagocytosis, migration, and neu-

roinflammation signaling pathways, could be altered. KO

MGLs revealed similarities to the findings in RTT mouse

models, such as increased glutamate release (Maezawa

and Jin, 2010), and defective phagocytosis (Derecki et al.,

2012; Zhao et al., 2017). We also found that KO MGLs

also had an increased ROS production and impaired

chemotaxis to fractalkine and response to LPS stimulation

similar to CTRLMGLs, suggesting their ability to react to an

immune stimulus remains globally intact.

We established long-term co-culture systems and showed

that CTRL/KOR MGLs functionally rescued the synapto-

genesis defect of MECP2-lacking neurons. Neurite branch-

ing or length was not rescued, indicating a specific role in

synapse formation. In contrast to mouse studies (Maezawa

and Jin, 2010), human MGL-conditioned media alone did

not impact CSP numbers, suggesting that the molecules

secreted from KO MGL are not sufficient to elicit changes

in CSP. Instead, our data showed that signaling pathways,

such as integrin, chemokine, actin cytoskeleton, and com-

plement signaling, might explain how CTRL MGL rescues

the synaptic defects in MECP2 KO neurons. These data
Figure 5. ADH-503 rescues phagocytosis in KO MGLs and synaptic
in mouse
(A) Schematic of the compounds used in the screening; agonist com
(B) Drug screening using phagocytosis assay. Phagocytosis percenta
tested by two-way ANOVA (****p < 0.001, *p = 0.0109, **p = 0.0041
Bars represent mean ± SEM.
(C) MECP2 binding events to ITGAM (CD11b) promoter, baseline bindin
Significance was tested by two-way ANOVA followed by Sidak multipl
-190 bp **p = 0.0013, untreated KOR vs. ITGAM -190 bp **p = 0.001
(D) Peaks detected in the promoter region of ITGAM in CTRL and KOR

(E) Quantification of colocalized synaptic (VGLUT/HOMER1) puncta i
1 mM of ADH-503 using Imaris software. The dotted line indicates the n
with CTRL MGLs. Significance was tested by one-way ANOVA with Tuk
0.0163, KO no MGL vs. KO + KO MGLs+ ADH-503 *p = 0.0109, KO + KO MG
503 *p = 0.0236, KO + CTRL MGLs vs. KO + KO MGLs+ ADH-503, and K
(F) Schematic of ADH-503 treatment of MeCP2-KO male mice.
(G) Average total symptom score was calculated in each group at indi
significant reduction in total score compared with vehicle-treated Me
tested with Student’s t test, week 8; ***p = 0.0004, week 9, ***p =
(H) Kaplan-Meier survival curves. MeCP2-KO mice treated with ADH-50
mice (*p = 0.0244; log rank test), with median survival of 63.5 days (fo
KO-ADH-503: 10.
(I) Cryosections of WT or MeCP2-KO mouse brains treated with vehicle
measurement of soma size was plotted on a bar graph. Significance w
(**p = 0.0078, ***p = 0.0004), n = 6 mice/group.
also indicate that adding KOMGLs could have a deleterious

effect on synaptogenesis.

Phagocytosis is a complex receptor-mediated process

that requires three main parts, ‘‘find-me,’’ ‘‘eat-me,’’ and

‘‘digest-me,’’ each of which in turn is regulated by different

receptors, molecules, and signaling pathways. Although

recent studies have begun to focus on microglial phagocy-

tosis in adult neurological disorders (Galloway et al., 2019;

Garcia-Reitboeck et al., 2018; Sellgren et al., 2019), the

contribution of microglial engulfment to human neurode-

velopmental conditions has been largely unexplored. We

found alterations at each step of the phagocytosis process

in KO MGLs. Interestingly, microglial phagocytosis has

been previously shown to be important in mouse models

of RTT (Derecki et al., 2012). By using phagocytosis as a

therapeutic target, we tested several compounds known

to be agonists or inhibitors of different complement recep-

tors or integrins involved in the process of phagocytosis.

Even though we performed a small targeted drug screen,

we identified one compound, ADH-503, able to restore

the phagocytic function in KO MGLs and synaptic defects

in KO spheroids. ADH-503 is an agonist of CD11b, which,

together with CD18, forms the CR3 (Hong et al., 2016; Le

Cabec et al., 2002; Stevens et al., 2007; Vivanti et al.,

2020, n.d.). We have also shown that MECP2 occupies

the ITGAM promoter, the gene encoding for CD11b.

ADH-503 is a small molecule that can partially activate

CD11b, which was previously developed and used as a
defects in KO spheroids and improves disease score and survival

pounds are in red and inhibitors in blue.
ge of zymosan particles compared to CTRL MGLs. Significance was
), experiment run in two batches, n = 12 to 24 biological replicates.

g events detected (untreated) or at the promoter region of ITGAM.
e comparison test (***p = 0.0004, *p = 0.0236, CTRL vs. KO ITGAM
9), n = 3 independent experiments. Bars represent mean ± SEM.
MGLs by MECP2 ChIP-seq.
n KO spheroids co-cultured with KO or CTRL MGLs and treated with
umber of colocalized synaptic puncta in CTRL spheroids co-cultured
ey’s multiple comparison test (KO no MGL vs. KO + CTRL MGLs *p =
Ls vs. KO + CTRL MGLs *p = 0.0344, KO + KO MGLs vs. KO + KO + ADH-
O no MGL vs. KO + KO MGLs were non-significant).

cated time points. MeCP2-KO mice treated with ADH-503 showed a
cp2-KO mice. N = KO-vehicle: 11, KO-ADH-503: 10. Significance was
0.0007.
3 survived significantly longer than non-treated control MeCP2-KO
r control mice) and 91 days (for ADH-503-treated mice). N = KO: 20,

or ADH-503 stained with NeuN (scale bar 100 mm, on the left) and
as tested by one-way ANOVA with Tukey’s multiple comparison test
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treatment for pancreatic cancer and is currently in phase 1

of clinical trials (Panni et al., 2019b). Daily treatment of

MeCP2-KO mice, similar to our in vitro studies using pa-

tient-derived cell lines to improve clinical translation of

this study, whose microglial phagocytosis is also altered

(Derecki et al., 2012), with ADH-503 led to a significant

improvement of the symptom progression and increased

survival. Moreover, it is important to note that despite

the treatment starting at 3 weeks, hence after disease onset,

the treatment is still able to significantly improve the pro-

gression of the disease. Apart from rescuing neuronal soma

size, ADH treatment might improve the overall symptoms

of the mice by acting on peripheral macrophages/other

myeloid cells that also express CD11b and were shown to

have altered phenotypes in RTT mouse models (Cronk et

al., 2015; Schafer and Stevens, 2015). However, given that

RTT is mainly considered a disease in females since it is

X-linked, additional studies should be performed using fe-

male cell lines and female RTT mouse models.

Our data revealed that MECP2 is required for microglial

functions such as phagocytosis, likely through CD11b,

and support that MGL plays a role in human neurodevel-

opment, notably in synapse formation (Derecki et al.,

2012; Garré et al., 2020; Schafer et al., 2016).We also found

some differences with rodent models regarding inflamma-

tion and the role of secreted factors on neurotoxicity

(Cronk et al., 2015; Maezawa and Jin, 2010), highlighting

the importance of using a human model to understand

the disease-relevant mechanisms. Improving the genera-

tion of hiPSC-derived microglial surrogates to replace the

unhealthy host microglia could represent a starting point

for cell-based therapies (Bennett and Bennett, 2020).

Our findings establish the experimental groundwork to

identify molecules involved in human neuro-immune in-

teractions during development. A better understanding of

the molecular and cellular interplay between neurons

and microglia in a human experimental model could pro-

vide a better understanding of microglia in physiological

conditions during neurodevelopment. Our results provide

initial clinical evidence that human microglial cells could be

used as therapeutic targets that can lead to the discovery of

novel and efficient treatments for uncurable neurological

disorders. Given that microglial cells are immune cells of

the CNS, implicated in all neurological conditions,

focusing on studying microglial disease phenotypes and

performing drug screenings specifically to rescue altered

microglial phenotypes could pave the way to innovative

treatments for neurodevelopmental but also broader

neurological conditions. Although microglial cells may

not be the initial disease-driving cell type inmost neurolog-

ical conditions, identification of disease pathways in hu-

man microglial cells offers a unique opportunity to be

able to intervene during symptomatic phases/after the
1086 Stem Cell Reports j Vol. 19 j 1074–1091 j August 13, 2024
onset of any given neurological disorder where these cells

play a pivotal role. One of the main issues in the treatment

of neurological conditions is the lack of clear disease onset

biomarkers and prediction methods to intervene before

disease onset. Therefore, current treatment options for pa-

tients are offered once the symptoms appear and continue

developing, which is often too late to target the initial

victim cell type and/or disease mechanism. Thus, targeting

microglial cells, which are implicated in the symptomatic

phases of the disease, to identify new therapeutic targets

may give the patients a fighting chance to improve or

even overcome their conditions.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact
Further information and requests for resources and reagents

should be directed to and will be fulfilled by the lead contact, Pinar

Mesci (pmesci@gmail.com).

Materials availability

This study did not generate new unique reagents. Extended

detailed experimental procedures can be found in the supple-

mental information section.

Data and code availability

The data that support the findings of this study are available

from the corresponding author upon reasonable request. ChIP-

seq and RNA-seq data are all available under NCBI-BioProject ID

PRJNA635136.

Phagocytosis assay
Phagocytosis assay was performed according to themanufacturer’s

instructions with pHrodo Red Zymosan A BioParticles (Life Tech-

nologies, Carlsbad, USA) conjugate for phagocytosis. Briefly,

20,000 MGLs were plated on a 96-well tissue culture plate and

incubated in M2 media (Neurobasal media supplemented with

23 Gem21 NeuroPlex, 13 NEAA, 13 GlutaMAX) containing fluo-

rescently labeled zymosan particles (0.125mg/mL) for 2 h at 37�C,
5% CO2. Fluorescence was measured with Tecan Infinite 200 PRO

microplate reader (Life Sciences, Switzerland).

For experiments featuring block of zymosan uptake, cell mono-

layers were treated with 1 mM Cytochalasin D (Sigma-Aldrich)

30 min prior to incubation with zymosan.

For the compound screening, MGLs were pre-treated with each

compound 1 day prior to the phagocytosis assay. All compounds

were used at 10 mM, which did not cause any decrease in cell

viability.

Brain cortical organoid-derived synaptosome-

enriched fraction isolation
Synaptosomeswere isolated from6-week-old brain organoids from

CTRL samples generated from our previously published protocol

(Trujillo et al., 2018) (using Syn-PER Synaptic Protein Extraction

Reagent (Thermo Fisher Scientific) according to themanufacturer’s

instructions. Synaptosomes were then conjugated using IncuCyte
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pHrodo Red Cell Labeling Kit for phagocytosis and added on top of

MGLs for 2 h. The fluorescence was measured using the Incucyte

software.

Glutamate assay
The Glutamate Colorimetric Assay kit (ab83389, Abcam, USA) was

used to measure the glutamate in the conditioned media by MGLs

following the manufacturer’s instructions. 50,000 MGLs were

plated in 100 mL of media and conditioned for 24 h. 50 mL of sam-

ples was used.

ROS assay
50,000 MGLs were plated in 100 mL of media and conditioned for

24 h. ROS-GloH2O2 Assay (Promega, USA)was used tomeasure the

ROS in the conditionedmedia byMGLs according to themanufac-

turer’s instructions. The relative luminescence unit was recorded in

a plate reader.

Image analysis
ImageJ software was used to calculate the integrated density of

MeCP2 (antibody information is provided further in immunocyto-

chemistry section) inMGL. Briefly, the channels were split and the

integrated density of the appropriate channel wasmeasured by the

software as previously described (Zhu et al., 2020).

Chemotaxis assay
Chemotaxis assay was performed using 5 mm polyester transwell

chamber, with 300 mM ATP or CX3CL1 at 100 ng/mL for 4 h.

The cells that have migrated through the chamber were then

manually counted in several regions of interest.

Immunocytochemistry
Mice were anesthetized and perfused trans-cardiac with PBS fol-

lowed by 4% buffered paraformaldehyde (PFA) at 8 weeks. Brains

were removed and fixed with 4% PFA overnight at 4�C. The fixed

tissue was cryoprotected with 30% sucrose and frozen in optimal

cutting temperature medium. Coronal sections were obtained by

sectioning the tissue at 30 mm using a microtome. The images

were taken in the hippocampal CA1 region in the cerebral cortex

similar to previous studies (Derecki et al., 2012). Soma was visual-

ized using NeuN staining; each NeuN+ soma was measured by

manual tracing using ImageJ software.

MGLs, neuron-MGL, neuron-fibroblast, and neurons withMGL-

conditioned media were fixed with 4% PFA for 20 min at room

temperature. Cells were permeabilized and incubated with block-

ing solution (10% fetal bovine serum [Life Technologies], 0.1%

[v/v] Triton X-100 in 13 Dulbecco’s phosphate buffer solution

[DPBS, Gibco]) for 30 min. Then, the primary antibody was added

(diluted in blocking solution) and samples were incubated over-

night at 4�C. Cells were then washed two times with 13-PBS and

incubated with the secondary antibody for 1 h at room tempera-

ture. Secondary antibodies (all conjugated to Alexa Fluor 488,

555, and 647) were purchased from Life Technologies and used

at a 1:1,000 dilution. Cells were washed twice (1x-PBS), incubated

with fluorescent nuclear 6-diamidino-2-phenylindole (DAPI,

VWR International, 1:5,000) for 10 min, and mounted with Pro-
long gold anti-fade reagent (Life Technologies). Samples were

imaged using an Axio Observer Z1 Microscope with ApoTome

(Zeiss).

Antibodies and dilutions used: monoclonal mouse anti-human

CD68, (1:500, Dako); polyclonal rabbit anti-Iba-1, (1:500, Wako),

polyclonal rabbit anti-human PU.1 (1:500, Cell Signaling

Technology), polyclonal rabbit anti-CX3CR1 (1:2,000, Bio-Rad),

polyclonal goat anti-human TREM2 (1:100, R&D Systems), mono-

clonal mouse anti-human CD11b (1:500, BD Biosciences),

polyclonal rabbit anti-human P2YR12 (1:125, Alomone), poly-

clonal rabbit anti-human MeCP2 (1:500, Diagenode), anti-

Homer1 (Synaptic Systems, 1:500), anti-VGLUT1 (Synaptic Sys-

tems, 1:500), anti-MAP2 (Abcam, 1:2,000), and NeuN (Millipore,

1:500).
Co-culture experiments
For neuron-MGL or primary control fibroblast co-culture exper-

iments, we plated 50,000 NPCs on PO-Laminin-coated cover-

slips in NPC media (see above). The next day, we retrieved the

basic Fibroblast Growth Factor (bFGF) and added Rock inhibitor

to start neuronal differentiation. 50,000 MGL progenitor cells

freshly sorted with CD14+ microbeads or 50,000 primary fibro-

blasts were directly added onto each coverslip. The neurons

were allowed to differentiate for 6–8 weeks in the presence of

MGL or fibroblast before proceeding with the synaptogenesis as-

says. The fibroblasts and the MGL were first labeled with the

membrane dye PKH26 to verify their presence at the end of

the 8 weeks of neuronal differentiation. Then, another batch

of co-culture was generated, this time without the membrane

dye, to be able to perform the immunostainings for synaptic

proteins without interference from the fluorescent dye. Finally,

for neurons with MGL conditioned media, we plated 50,000

MGLs per 96-well plate and conditioned media for 48 h in

neuronal media (see above) supplemented with 50 ng/mL IL-

34 and 50 ng/mL M-CSF. Conditioned media from each well

were recovered, filtered using 40 mm cell strainer (BD Biosci-

ences). 100 mL of filtered MGL conditioned media was added

onto each coverslip with neurons every 2 days for 6–8 weeks.
Synapse formation assay
hiPSC-derived neurons co-cultured with MGL, fibroblasts, or with

MGL-conditioned media were fixed at 6–8 weeks after bFGF

retrieval and imaged using an Axio Observer Z1 Microscope with

Apotome (Zeiss) using compiled z stack images at an objective res-

olution of 63X. Co-localization of pre- (VGLUT1) and post-synap-

tic (HOMER1) markers were quantified manually when in contact

with MAP2 at a length of 50 mm as previously described (Derecki

et al., 2012). Each co-culture combination had at least 10 to 15 im-

ages processed from which 10 to 20 MAP2-positive neurons were

used for co-localized synaptic puncta quantification from a total

of four biological replicated and two independent co-cultured

batches. For drug-treated 3D-MGL spheroid cultures, 7 days after

initial spheroid plating, high-resolution images were captured us-

ing a Dragonfly microscope, employing z stack imaging with a

403 objective resolution. Subsequently, co-localization analysis

of pre-synaptic (VGLUT1 1:500, Cat.No. 135 311 – Synaptic Sys-

tems antibodies) and post-synaptic (HOMER1 1:500, Cat.No. 160
Stem Cell Reports j Vol. 19 j 1074–1091 j August 13, 2024 1087



003 – Synaptic Systems antibodies) markers in conjunction with

MAP2 (1:2,000, PA1-10005 -Invitrogen) was quantified utilizing

the Imaris 10.1 software (Oxford Instruments). Notably, each co-

culture combination underwent rigorous analysis, with a mini-

mum of 12 images processed per combination, ensuring compre-

hensive and statistically robust data collection. To analyze the

data, the number of HOMER1 and VGLUT1 dots was quantified,

along with the volume of axons measured in cubic micrometers

(mm3). Subsequently, we assessed the colocalization of HOMER1

points with the axons. Next, we quantified the colocalization of

VGLUT1 points with both HOMER1 and axons. The data were

then normalized using the following equation. Finally, the data

were represented as the density of HOMER1/VGLUT normalized

by the volume of the axons measured in cubic micrometers (mm3).

ðNumber of colocalized VGlut1 punctaÞ
Total number of VGlut puncta

� 1

Total volume og Axons in mm3

Neurite tracing
Images used for neurite tracing were taken from an Axio Observer

Z1Microscopewith Apotome (Zeiss) using compiled z stack images

at an objective resolution of 63X. iPSC-derived neurons were

immunostained using microtubule-associated protein 2 (MAP2)

as a neuronalmarker to indicate neurite outgrowth.MAP2-positive

neurites were then manually traced using the software, ImageJ,

with the plugin extension, NeuronJ. Manual traces began at the

starting point of the MAP2-positive neurite and were followed

along the path until where the neurite terminates. Branches were

traced in the same way. Distance was calibrated at a scale of

9.757 pixels/mm.

Mesoscale assay
CD14+-sorted iPSC-derived MGLs were seeded at 5 3 104 cells per

well on 96-well cell culture plates and kept inM2media. Cells were

stimulated with or without treatments of 1 mg/mL E. coli LPS

(Sigma-Aldrich) for 30 h. 100 mL of conditioned media was recov-

ered from each well the next day. Cytokine levels were quantified

using a customized V-PLEX Human Cytokine 30-Plex Kit (Meso

Scale Discovery, Rockville, Maryland, USA) according to the man-

ufacturer’s instructions. Chemokines and cytokines measured

from custom multiplex panels consist of eotaxin, eotaxin-3, IL-8

(HA), IP-10, MCP-1, MDC, MIP-1a, MIP-1b, TARC, GM-CSF, IL-

12/IL-23p40, IL-15, IL-16, IL-17A, IL-1a, IL-5, IL-7, TNF-b,

VEGF-A, IL-10, IL-12p70, IL-13, IL-1b, IL-2, TNF-a, and IL-6. Sam-

ples with or without LPS stimulation underwent a 10-fold or

2-fold dilution, respectively.

Statistical analyses
Results were analyzed using Prism Software (version 6, GraphPad,

USA). Statistical significance was determined using one-way

ANOVA tests followed by Tukey or Sidak multiple comparisons

tests to compare different groups with one variable, or two-way

ANOVA tests when there were two variables and Student’s t test

to compare means of two groups using a p < 0.05. The reported

values are means ± SEM, as mentioned in relevant figure captions.

Sample sizes, n, are reported in relevant figures (as data points) or

figure legends.
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