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Neutrophils possess a diverse repertoire of pathogen clearance mechanisms, one of which is the formation of neutrophil 
extracellular traps (NETs). NETs are complexes of histone proteins and DNA coated with proteolytic enzymes that are released 
extracellularly to entrap pathogens and aid in their clearance, in a process known as NETosis. Intravascular NETosis may drive 
a massive inflammatory response that has been shown to contribute to morbidity and mortality in many infectious diseases, 
including malaria, dengue fever, influenza, bacterial sepsis, and severe acute respiratory syndrome coronavirus 2 infection. In 
this review we seek to (1) summarize the current understanding of NETs, (2) discuss infectious diseases in which NET 
formation contributes to morbidity and mortality, and (3) explore potential adjunctive therapeutics that may be considered for 
future study in treating severe infections driven by NET pathophysiology. This includes drugs specifically targeting NET 
inhibition and US Food and Drug Administration–approved drugs that may be repurposed as NET inhibitors.
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In the recent pandemic, early coronavirus disease 2019 
(COVID-19) phenotypes characterized by persistent and exces-
sive inflammatory responses posed significant challenges to 
clinical management, as evidenced by high fatality rates. 
Autopsies revealed the presence of neutrophilic infiltrates and 
fibrin deposition in lung airspaces [1] and blood vessels [2]. 
Additionally, emerging research has uncovered crucial, yet 
underrecognized mechanisms of immune dysregulation, spe-
cifically the increased release of neutrophil extracellular traps 
(NETs) by circulating and infiltrating neutrophils in 
COVID-19 patients [3, 4]. Collectively, these findings suggest 
that NETs and their associated collateral damage, such as 
lung epithelial injury [5] and the induction of immunothrom-
bosis, could be key drivers in severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) immunopathology and host 
damage. While present in SARS-CoV-2, this vicious cycle of 
NET-induced dysregulated inflammation and coagulation is 
also present in other infectious disease states. This underscores 

the pressing need for more comprehensive data and therapeutic 
approaches targeting these innate immune components in 
treating systemic infections.

NEUTROPHIL MECHANISMS FOR PATHOGEN KILLING

When neutrophils encounter pathogens, they can phagocytose 
(engulf) them and eliminate them by fusion with their cytoplas-
mic granules containing proteases, defensins and other antimi-
crobial peptides, or reactive oxygen species (ROS) [6]. To tackle 
larger pathogens, neutrophils can also create NETs [6], web- 
like structures composed of DNA, histones, and antimicrobial 
proteins that entrap and neutralize invading microorganisms.

During the acute phase of infection, neutrophils leave the 
bloodstream to target tissues, guided by chemokine gradients 
and chemical signals [7, 8]. These signaling molecules activate 
neutrophils, as observed with CXCL8, which triggers ROS 
production and induces L-selectin shedding [9]. Other inflam-
matory mediators like complement component C5a also con-
tribute to neutrophil recruitment to infection sites [7] and 
activation of NET formation when primed by interferons [8]. 
Activated platelets may also guide neutrophil migration 
into inflamed tissue and induce NET formation [10]. 
Immunothrombosis is a bidirectional process between the in-
nate immune system and coagulation that is initiated by tissue 
factor (TF), a high-affinity receptor that is expressed on peri-
vascular and immune cells (including neutrophils). In response 
to blood vessel damage or inflammatory mediators (eg, endo-
thelial cells or leukocytes), TF acts as a cofactor to activate 
the extrinsic pathway of the coagulation cascade that leads to 
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the activation of factor X (the common pathway), which 
ultimately produces thrombin. In the course of combating in-
fection, innate immune cells detect pathogen-associated molec-
ular patterns (eg, bacterial lipopolysaccharides) via pattern 
recognition receptors (eg, TLR4), resulting in TF release that 
activates the coagulation cascade [11]. The end product is 
thrombin, which not only converts fibrinogen to fibrin but 
also activates platelets. The creation of a fibrin mesh that en-
traps pathogens is further enhanced by the presence of activat-
ed platelets that amplify inflammatory processes through the 
release of cytokines [11]. The latter attracts immune cells, 
including neutrophils that release NETs, thereby further pro-
voking “immunothrombosis” in blood vessels. However, intra-
vascular NET formation can lead to the occlusion of 
microvessels independently of fibrin, resulting in severe sys-
temic inflammation and massive cell death in affected areas.

Maintaining a balance between effectively eliminating patho-
gens and limiting overactive responses that can harm vascular 
health is a complex challenge for neutrophils. Factors such as 
tissue-specific microenvironments, the microbiome, and patho-
logical conditions, along with intrinsic factors like the expression 
of aging-regulating receptors (eg, CXCR2 and CXCR4), regulate 
neutrophils that favor a proinflammatory phenotype [12].

NETosis: A KEY INNATE IMMUNE SYSTEM PROCESS 
WITH COLLATERAL HOST DAMAGE

NET formation is a tightly regulated and multifaceted process 
for trapping and killing microbes and tumor cells, enhancing 
immune responses, and promoting coagulation [13]. NET for-
mation is initiated by innate immune receptors and influenced 
by the local environment, cytokines, and pathogen size and vir-
ulence factors. Two main pathways have been described: 

1. Slow, lytic pathway: This pathway involves the assembly of 
NETs intracellularly, followed by slow cell membrane rupture.

2. Fast, nonlytic pathway: In this pathway, nuclear chromatin 
is expelled rapidly along with degranulation and the release 
of prestored granule proteins. These components are then 
assembled extracellularly, leaving behind an anucleated 
cell capable of phagocytosis, aptly referred to as a “zombie 
neutrophil” [13].

NETosis BIOMARKERS

NETs consist of an extracellular network of DNA, oxidants, 
and proteolytic enzymes of both cytosolic and granular origin. 
These include neutrophil elastase, myeloperoxidase (MPO), 
PAD4, cathepsin G, gelatinase, lysozyme C, leukocyte protein-
ase 3, lactoferrin, defensins, calprotectin, cathelicidins, 
HMGB1, actin, and histones. Circulating surrogate markers 
of NETs have been identified in plasma, such as complexes of 
DNA and MPO, citrullinated histone H3, cell-free DNA, and 

neutrophil elastase [14]. Markers of endothelial injury induced 
by NETs include von Willebrand factor and its protease, 
ADAMTS13 (a disintegrin and metalloproteinase with throm-
bospondin motifs 13). These markers have been used to 
risk-stratify the prognosis in COVID-19, where significant 
morbidity and mortality have been associated with NET-driven 
pathophysiology [15].

THE ROLE OF NETs IN THE PATHOPHYSIOLOGY OF 
INFECTIOUS DISEASES

Elevated levels of circulating NETs have been associated with 
poor clinical outcomes in patients with sepsis [16]. NETs 
have also been demonstrated in cases of severe bacterial pneu-
monia [17]. The bacteriostatic rather than bactericidal effects of 
NETs and induction of inflammation have led to dynamic dis-
cussions regarding the risk-benefit of NETosis to the host [18]. 
DNA, a key component of NETs, exerts direct antibacterial ac-
tivity through membrane disruption and chelation of essential 
cations [18]. DNA also facilitates complement-mediated killing 
of bacteria such as Pseudomonas aeruginosa and Staphylococcus 
aureus [19]. While nearly all bacteria can elicit NET formation, 
some organisms have evolved strategies to evade NETs, includ-
ing NET degradation, resistance to the antimicrobial compo-
nents of NETs, or by inhibiting NET formation altogether. 
For a comprehensive understanding of the interaction between 
different bacterial species and host NETs, we refer readers to 
the excellent review by Schultz et al, which summarizes current 
knowledge on several bacterial species [18].

NET release also plays a significant role in the pathogenicity 
of severe respiratory viral infections [20, 21]. Studies have 
shown elevated plasma NET release in patients with influenza, 
which can increase the permeability of alveolar epithelial cells. 
The extracellular histones of NETs have been detected in nasal 
aspirates of influenza-infected patients. While histones have 
been shown to inhibit influenza in vitro, they may exacerbate 
acute lung injury. In a mouse influenza infection model, treat-
ment with antihistone antibodies resulted in a significant re-
duction in lung injury, suggesting that targeting NETs, 
especially their histone component, could be a potential thera-
peutic approach for severe influenza [18]. High levels of NETs 
correlate with poor prognosis of severe influenza A infections 
[22]. NET release has also been observed in respiratory syncy-
tial virus (RSV) infections, and in the lungs of children with se-
vere RSV infection, resulting in airway obstruction [21].

Dental caries and periodontal disease are the primary source 
of most viridans streptococcal endocarditis [23]. Periodontal 
disease is a complex and multifactorial condition characterized 
by dysbiosis between the gingival microbiome and the host im-
mune response, in which NETs play an integral role. In patients 
with periodontal disease, there is a significant increase in total 
and apoptotic neutrophils in the gingival tissue compared to 
those without the disease. The increased presence of NETs is 
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believed to result from multiple factors, including impaired NET 
degradation and bacterial escape from NET-mediated antibacte-
rial effects. Consequently, neutrophils become trapped in the 
local tissues, leading to augmented tissue destruction [24].

The interaction between S aureus and neutrophils is a dy-
namic process with significant implications for various infec-
tions, including endocarditis and pneumonia. Staphylococcus 
aureus has multiple mechanisms to both induce and evade 
NET-mediated killing, contributing to catastrophic patho-
physiology in the bloodstream and respiratory tract in the 
most severe infections. NET induction by S aureus is mediated 
by several mechanisms: (1) surface lipoproteins via TLR2/1; 
(2) platelet activation and aggregation via binding to aIIbb3 integ-
rin, FcgRIIa, or GPIBa binding mediated through microbial sur-
face components recognizing adhesive matrix molecules 
(MSCRAMMs) clumping factor A, fibronectin binding protein 
A and B, protein A, and iron-regulated surface determinant B; 
(3) α-toxin-mediated platelet release of β-defensins; and 
(4) Panton-Valentine leukocidin and other exotoxins [25].

Severe S aureus pneumonia can develop following influenza 
infection, and this association is not specific to any particular 
virulence factor. It is believed that during influenza infection, 
a significant number of neutrophils are recruited into the alve-
olar space. Subsequently, coinfection with S aureus “ignites” 
these neutrophils to undergo NET formation. Interestingly, 
surfactant, which is mainly (80%) composed of phospholipids 
and produced by type 2 alveolar cells, can inhibit NET forma-
tion. This suggests that surfactant acts as a local regulator, mit-
igating the inflammatory consequences of NETosis and 
possibly controlling excessive inflammation. Damage of type 
2 alveolar cells in severe S aureus pneumonia can undermine 
this important defense, further exacerbating tissue injury. We 
refer readers to an excellent summary of the pathophysiology 
of postinfluenza pneumonia [26].

NETosis also plays an integral role in the pathophysiology of 
S aureus endocarditis, revealing the intricate interplay between 
bacteria, immunity, and coagulation [27]. Platelets are rapidly 
recruited to sites of vascular injury and activated by von 
Willebrand factor and collagen released by endothelial cells. 
The activated platelets recruit additional platelets and attract 
neutrophils to the site of endovascular infection. This interac-
tion between platelets and neutrophils triggers NETs and for-
mation of vegetations. Staphylococcus aureus possesses several 
virulence factors that enable it to defend against potential 
NET-mediated killing within the vegetations. These factors in-
clude adherence proteins like Eap, serine protease EpiP, and nu-
cleases nuc1 and nuc2. This complex microenvironment within 
the vegetation serves as a battleground where S aureus attempts 
to manipulate NET formation while simultaneously safeguard-
ing itself from being entrapped and killed by NETs. We refer 
readers to an excellent review by Meyers et al further describing 
the complex relationship of S aureus and NETosis [27].

COVID-19

NET formation has emerged as a pivotal factor in contributing to 
the dysregulated inflammatory responses, immunothrombosis, 
and organ damage commonly observed in severe COVID-19 
cases. Immunothrombosis in COVID-19 has been attributed 
to complement and TF-enriched NETs [28]. Elevated levels of 
NETs have been identified in plasma, tracheal aspirates, and 
lung autopsy tissues from COVID-19 patients [5]. NETs have 
also been found to infiltrate the vascular, airway, and interstitial 
compartments in lungs of patients with SARS-CoV-2 infection.

Research on SARS-CoV-2–mediated NETosis suggests its de-
pendence on viral replication, angiotensin-converting enzyme, 
PAD-4, and serine proteases [5]. Neutrophils collected from pa-
tients hospitalized with SARS-CoV-2–related respiratory distress 
exhibit heightened NET release, increased ROS production, and 
enhanced phagocytosis compared to healthy controls [29]. The 
aberrant neutrophil responses characterized by excessive NET 
release significantly contribute to the pathophysiology of severe 
COVID-19, making them attractive targets for therapeutic inter-
vention to lessen inflammation and tissue damage. Clinical trials 
have investigated the role of anakinra, an interleukin 1 receptor 
antagonist, in mitigating NETosis. In 2022, an emergency use au-
thorization was issued for the use of anakinra in patients hospi-
talized with severe SARS-CoV-2 based on the SAVE-MORE trial 
(NCT04680949). Our group has also demonstrated a significant 
attenuation of NETosis with intravenous immunoglobulin 
(IVIG) [3]. The efficacy of IVIG has shown mixed results in ther-
apeutic trials, possibly due to its benefits being limited to a subset 
of younger patients with severe disease treated early in their 
course [30].

Dengue Fever

Dengue fever is associated with dysfunctional innate immune 
responses leading to excessive inflammation, which can result 
in severe illness and death. The presence of NET components 
has been detected in serum samples of patients with more 
severe forms of dengue, including hemorrhagic fever [31]. 
In the context of acute infection, NET formation has been 
shown to be triggered by dengue virus envelope protein 
domain III (EIII) both in vivo and in vitro. These processes 
may involve the NLRP3 inflammasome, as evidenced by the 
suppression of dengue virus EIII-induced NETosis with the 
use of NLRP3 inflammasome inhibitors. Additionally, NLRP3 
knockout mutant mice challenged with EIII exhibit reduced 
NETosis [32].

Malaria

Malaria remains a significant public health concern in develop-
ing countries, causing considerable morbidity and mortality. 
Neutrophils play a key role in the host response to malaria, 
but they can also drive inflammation, which may exacerbate 
the disease [33]. Levels of circulating NETs correlate with 
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malaria disease severity [34]. In this context of malaria, heme 
has been identified as a trigger for NET formation in tumor ne-
crosis factor α–primed neutrophils through the activation of 
protein kinase C, similar to observations in sickle cell disease. 
Subsequent degradation of NETs by DNase I releases NET 
components that induce inflammation. For instance, in macro-
phages, NET components promote the induction of granulo-
cyte colony-stimulating factor, while upregulating ICAM-1, 
an endothelial cell cytoadhesion protein that binds infected 
red blood cells. This process leads to the sequestration of cells 
in the microvasculature, contributing to end-organ damage, 
particularly in the brain and lungs [35].

POTENTIAL ADJUNCT TREATMENT OF INFECTIOUS 
DISEASES BY ADDRESSING NETOSIS

Antibiotics
Macrolide antibiotics are particularly well known for their effects 
in attenuating neutrophil responses, especially in neutrophilic 
lung diseases like chronic cystic fibrosis pneumonitis. 
Macrolides have been shown to decrease levels of interleukin 8, 
a potent neutrophil chemoattractant and stimulant, which con-
tributes to the modulation of NETosis [36]. Studies have dem-
onstrated that pretreatment of neutrophils with azithromycin 
reduces the release of NETs induced by phorbol 12-myristate 
13-acetate [37]. These effects of macrolides in inhibiting 
NETosis are associated with survival benefits in diseases where 
NETosis plays a significant role in the pathophysiology, such as 
cystic fibrosis, sepsis, and pneumonia [38–40].

In a murine model of chronic obstructive pulmonary disease 
(COPD), erythromycin reduced NETs in the bronchoalveolar 
fluid of mice chronically exposed to cigarette smoke, a known 
trigger of NETosis [41]. Erythromycin suppressed ex vivo hu-
man neutrophil production of NETs induced by cigarette 
smoke in COPD patients [41]. In an observational, multicohort 
study, NETs were identified as a key marker of disease severity 
and treatment response in bronchiectasis [42]. This study also 
revealed that low-dose azithromycin was associated with a sig-
nificant reduction in NETs in sputum from patients with bron-
chiectasis and asthma over a 12-month period [42]. Although 
further studies are needed, azithromycin’s therapeutic role in 
neutrophilic airway diseases [42–44] and evidence supporting 
its direct inhibition of NET production in vitro and in vivo 
[37, 41] offer promise to the drug’s potential therapeutic impact 
on patients suffering from NET-related diseases.

In the quest for antibiotics to treat multidrug-resistant, 
gram-negative infections, carbapenem-resistant Acinetobacter 
baumannii (CRAB) has proven particularly challenging. 
However, macrolides seem to offer significant activity that is 
not fully captured in standard antimicrobial susceptibility as-
says [45]. In this context, clarithromycin stands out as a poten-
tial contributor to treatment of CRAB infections, as it has been 

shown to effectively reduce NETs (and consequently, inflam-
mation) in A baumannii infection [46].

NONANTIBIOTIC DRUGS THAT INFLUENCE NETOSIS

HMG-CoA Reductase Inhibitors
HMG-CoA (3-hydroxy-3-methylglutaryl–coenzyme A) reduc-
tase inhibitors (statins) are widely prescribed lipid-lowering 
medications used in the primary or secondary prevention of 
coronary heart disease. Statins possess anti-inflammatory 
properties that involve the modulation of NETosis through 
mechanisms still being studied [47]. There is growing evidence 
supporting their potential as adjunctive therapy for infections. 
A pilot randomized trial demonstrated that simvastatin im-
proved clinical outcomes in patients with pneumonia [48], 
and a meta-analysis of several studies points to a possible ben-
efit of statins in COVID-19 [49], both conditions where 
NETosis plays an important pathophysiological role. Statins 
were shown to augment the antistaphylococcal activity of neu-
trophils by promoting NET formation, and patients whose 
statin treatment was continued during hospitalization for 
S aureus bloodstream infection showed a 54% reduction in 
30-day mortality compared to those whose statin was discon-
tinued [50].

P2Y12 Inhibitors (Ticagrelor/Clopidogrel)
Ticagrelor has been successfully used to clear an endovascular 
S aureus infection that was refractory to even salvage antibiotic 
therapy, with the added benefit of restoring normal platelet 
counts [51]. Clopidogrel has been associated with reduced 
mortality in patients with S aureus bacteremia [52]. In addition 
to its effects on platelets, ticagrelor has been shown to attenuate 
NETosis [53]. NET inhibition may have advantages in patients 
after myocardial infarction, placements of intracardiac stents, 
and other vascular pathologies [54], as well as in protecting 
the host from adverse outcomes in infection. Moreover, tica-
grelor has been associated with reduced infection-related mor-
tality in post hoc analyses of cardiovascular clinical trials [55].

Intravenous Immunoglobulin
IVIG has been shown to attenuate NETosis in a dose-dependent 
manner [3]. Additionally, IVIG has shown potential benefits 
in infections where NETosis plays a significant role in the 
disease pathophysiology, such as sepsis [56, 57]. In the context 
of COVID-19, the effectiveness of IVIG has been variable, 
as some smaller studies reported improved clinical outcomes 
while others did not, suggesting a heterogeneous disease 
where only certain subsets of patients may benefit from IVIG 
treatment [3, 30, 58].

Metformin
Metformin, a drug commonly used to treat type 2 diabetes, has 
been shown to blunt NETosis, translating into promising results 
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in diabetic patients with COVID-19. Further studies investigat-
ing the impact of metformin on clinical outcomes in diabetic 
patients with infections characterized by NETosis-driven patho-
physiology are particularly intriguing [59, 60].

Miscellaneous Drugs
Several hormones and drugs have demonstrated the ability to 
inhibit NETosis, providing potential therapeutic options for 

various diseases. Progesterone [61], raloxifene [62], propofol, 
nutrilipid [63], β-2 adrenoceptor agonists [64], and disulfiram 
[65] are among the substances that have shown inhibitory ef-
fects on NET formation. In addition to these agents, 
DNA-targeted treatments have also been explored to reduce 
NETs in the lung [66, 67]. Long-acting nanoparticle DNase 
had shown promising results in suppressing neutrophil activi-
ties triggered by SARS-CoV-2 [66], and nebulized DNase (dor-
nase alpha) has been investigated in a case series of ventilated 
SARS-CoV-2 patients and was found to decrease the fraction 
of inspired oxygen [67]. Ongoing clinical trials exploring the 
use of DNase treatments in patients with SARS-CoV-2 offer 
the potential for further insights and therapeutic options 
(NCT04541979).

Colchicine, the well-known tubulin inhibitor, has been 
shown to inhibit NETosis and ameliorate lung injury in an an-
imal model of acute respiratory distress syndrome [68]. 
Additionally, it has been found to improve cardiac remodeling 
following acute myocardial infarction [69]. Recently, a new- 
generation tubulin inhibitor called sabizabulin has shown great 
promise in a randomized clinical trial involving COVID-19 pa-
tients. The trial reported significant relative reductions in death 
(55%), intensive care unit days (43%), mechanical ventilation 
(49%), and overall hospital stay (26%) among the treated pa-
tients [70]. These compelling results led the data and safety 
monitoring board to recommend early termination of the trial 
due to the drug’s favorable findings [70]. However, despite the 

Figure 1. Cartoon schematic depicting the activation and release of neutrophil extracellular traps in a process known as NETosis in response to infections that may fa-
cilitate pathogen clearance. However, neutrophil extracellular traps may lead to dysregulation in the host inflammatory and coagulation responses, resulting in tissue injury 
and death. Several drugs available today have been shown to attenuate NETosis and therefore may be repurposed as adjunctive therapies to reduce morbidity and mortality in 
diseases where NETosis plays a role in pathogenesis. Abbreviations: COVID-19, coronavirus disease 2019; IVIG, intravenous immunoglobulin; NETs, neutrophil extracellular 
traps. Figure was created in part with BioRender.com.

Table 1. Summary of Clinical Relevance of NETosis in the Pathophysiology 
of Disease

Infectious Diseases
Autoimmune 

Disease
Pharmaceuticals That 

Modulate NETosis

Influenza pneumonia ANCA vasculitis Macrolides

RSV pneumonia Systemic lupus 
erythematosus

HMG-CoA reductase inhibitors

SARS-CoV-2 Ticagrelor

Dengue fever Intravenous immunoglobulin

Malaria Metformin

Dental caries Progesterone

Staphylococcus aureus DNAse

Pneumonia Propofol

Bacteremia Nutrilipid

Endocarditis Colchicine

Sabizabulin

Abbreviations: ANCA, anti-neutrophil cytoplasmic antibody; HMG-CoA, 3-hydroxy- 
3-methylglutaryl–coenzyme A; NET, neutrophil extracellular trap; RSV, respiratory syncytial 
virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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promising outcomes, the future development of sabizabulin 
may face regulatory challenges due to statistical limitations as-
sociated with the small size of the study.

CONCLUSIONS

This review discusses NETs in various disease states and the po-
tential pharmaceutical agents that can modulate NETosis 
(Table 1). NETs are produced by neutrophils by different 
mechanisms as a host response to clear pathogens, but they 
can also cause considerable collateral damage to the host in cer-
tain situations (Figure 1). The translation of science into clini-
cal practice becomes increasingly challenging as we appreciate 
the heterogeneity of infectious diseases across different hosts, 
different pathogens, and even different strains within a bacterial 
species, each expressing different virulence factors that influence 
the host–pathogen interaction. However, the literature suggests 
that tilting the NETosis balance in favor of the host may be a 
promising approach to reduce morbidity and mortality from se-
rious systemic infection when used as adjunctive therapy along-
side antibiotics. Developing reliable biomarkers for NETosis and 
repurposing existing drugs with NET-inhibiting properties 
could be crucial first steps in developing effective therapies, 
opening the pathway for discovery programs seeking new, 
more selective agents. One of the many lessons learned from 
the COVID-19 pandemic is that ameliorating the host response 
may often be more beneficial to patient outcomes than targeting 
the pathogen itself. Considering NETosis as an integrated sys-
tems process across host physiology can improve our under-
standing of the host response to infection and lead to the 
development of better drugs to improve patient outcomes.
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