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Abstract: Background: Phosphoinositide 3-kinase is a potent target for cancer therapy due
to its significant role in the regulation of cellular growth and proliferation. Dysregulation
of the PI3k signaling cascade can constitutively activate growth pathways to trigger the
progression of cancer, resulting in the development of multiple inhibitors as cancer ther-
apeutics. Objectives: The wide array of cells expressing PI3k also include immune cells,
and the inhibition of these receptors has shown promise in combating inflammation and
infectious disease, a relationship we sought to examine further. Methods: We infected
wild-type and PI3kγ knockout murine macrophages as well as PI3kγ inhibitor-treated
THP-1 human macrophage-like cells with Staphylococcus aureus and quantified inflamma-
tion through gene expression analysis, protein secretion assays, and immunofluorescence
imaging. Results: We observed that knockout of PI3kγ in murine macrophages alongside
pharmacological inhibition through IPI549 treatment in THP-1 cells led to an NF-κB-driven
suppression in transcription and release of inflammatory cytokines upon infection with
methicillin-resistant Staphylococcus aureus. We were also able to confirm that this suppres-
sion of NF-κB translocation and subsequent decrease in inflammatory cytokine release did
not compromise and even slightly boosted the bacterial killing ability. Conclusion: PI3k is
primarily targeted for cancer therapies, but further exploration can also be carried out on
its potential roles in treating bacterial infection.

Keywords: host–pathogen interactions; drug repurposing; PI3k; Staph aureus

1. Introduction
As one of the largest fields of biomedical research, cancer receives billions in funding

annually to discover new chemotherapeutics and improve treatment outcomes [1]. A
novel pathway that is under investigation as a chemotherapeutic target is phosphoinositide
3-kinase (PI3k). PI3k, an enzyme activated by G protein-coupled receptors or receptor
tyrosine kinases, initiates the PI3k/Akt signaling axis and regulates multiple growth
pathways, including the mammalian target of rapamycin (mTOR) [2]. While primarily
associated with growth and proliferation, PI3k’s highly conserved nature and influence
on immune pathways have also made it a target of interest in infectious disease research.
With 700,000 deaths annually attributed to antibiotic-resistant microbes and projections of
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as many as 10 million deaths per year by 2050, antibiotic resistance presents an urgent need
for alternative treatments to reduce infection-associated morbidity and mortality [3]. Due
to the high expression of specific isoforms in immune cells and their important roles in
immune function, PI3k is a promising target for further study to modulate the host immune
response [4–7].

2. Phosphoinositide 3-Kinases
The American Cancer Society projected 609,820 cancer deaths and 1,958,310 new cases

in 2023 [8]. Cancer development often involves amplified receptor activity or uncontrolled
enzyme activity, leading to excessive phosphorylation and dysfunctional growth pathways.
The convergence of these pathways at PI3k makes it an efficient target for inhibition [2].
Mutations throughout the PI3k/Akt pathway are implicated in cancer development, with
mutations in PI3k alone being linked to breast, lung, gastric, kidney, and colorectal can-
cers [9]. Given its critical role in cancer progression, it is not surprising that the PI3k/Akt
pathway is often activated across various tumor types, making it a key focus for drug
development [10].

Mammalian PI3k is divided into three classes (I, II, III) comprising eight isoforms,
all of which share similar membrane-binding C2, helical, and kinase domains on their
catalytic subunits [11]. Class I kinases are further subdivided into α, β, γ, and δ isoforms.
The α and β isoforms are ubiquitously expressed across most cell types, while the γ and δ
isoforms are predominantly found in myeloid cells [12,13]. PI3k is activated by various cell
surface receptors, including receptor tyrosine kinases (RTKs), Ras GTPases, and G protein-
coupled receptors (GPCRs) [13]. Ligand activation of these receptors prompts the PI3k
regulatory subunit to facilitate the kinase activity of the associated catalytic subunit [14].
The catalytic subunit utilizes ATP to phosphorylate phosphatidylinositol lipids, thereby
triggering downstream signaling cascades [11]. This kinase activity is countered by a
phosphatase and tensin homolog (PTEN), which tightly regulates the cellular levels of
phosphatidylinositol-3,4,5-triphosphate (PIP3) and its precursor, phosphatidylinositol-
4,5-bisphosphate (PIP2) [15]. PIP3 localizes to the plasma membrane, where it enables
phosphoinositide-dependent kinase-1 (PDK-1) to phosphorylate protein kinase B (Akt),
modulating processes including cell survival, apoptosis, metabolism, DNA repair, and
motility [15]. Some notable pathways that are affected by Akt and, by extension, PI3k
include cell survival and inhibition of apoptosis through NF-κB, metabolism and translation
through mammalian target of rapamycin (mTOR), DNA repair through p53, and reactive
oxygen species generation through NADPH oxidase (Figure 1) [16,17]. These are also
pathways where aberrant signaling and dysregulation can lead to cancer development.

Drug development has historically focused on Class I kinases due to their well-
characterized roles in cancer [15,18]. As a result, multiple PI3k inhibitors have been
approved or are currently in clinical trials, targeting either all isoforms of PI3k together
(e.g., copanlisib) or specific isoforms (e.g., alpelisib, eganelisib) (Table 1) [18]. These in-
hibitors are designed to mimic and outcompete ATP at the kinase binding site, blocking Akt
phosphorylation and preventing the cascade of growth processes that are disrupted or over-
active in cancer [19]. LY294002, a non-selective PI3k inhibitor derived from the flavonoid
quercetin, is widely used in PI3k screens due to its high stability [20–22]. Similarly, wort-
mannin, a metabolite isolated from Penicillium wortmannii, is another non-selective inhibitor
that is frequently used in PI3k studies and will be discussed in this review [23]. IPI549
(eganelisib), a PI3k inhibitor that is specific to the γ isoform (Class I), was developed by
Infinity Pharmaceuticals as an anti-tumor therapy aimed at reprogramming myeloid cells
and will be discussed in the selected experiments presented later in this manuscript [24].
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Figure 1. Overview of PI3k pathway. PI3k is activated by various surface receptors, including toll-
like receptors (TLRs), receptor tyrosine kinase (RTK), and g-protein coupled receptors (GPCRs). The 
kinase domain phosphorylates phosphatidylinositol biphosphate (PIP2,) converting it to phospha-
tidylinositol triphosphate (PIP3). PIP3 subsequently phosphorylates Akt, which serves as a messen-
ger to initiate several metabolic pathways, several of which are illustrated above. PI3k plays an im-
portant role in regulating cell survival and proliferation, actin reorganization, and inflammation. 

Table 1. PI3k inhibitors that are FDA-approved or under current investigation in clinical trials. 

Drug Name Class Mode of Action 
Clinical 

Trial Stage Reference 

Alpelisib  PI3k-α in-
hibitor 

Selectively targets the mutated PI3k-α in many solid 
tumors to suppress increased activity 

Approved [25,26] 

Copanlisib Pan-PI3k 
inhibitor 

Targets all class I PI3k isoforms to hinder B-cell pro-
liferation and survival in follicular lymphomas 

Approved [25,27] 

Duvelisib 
PI3k-γ, δ 
inhibitor 

Selectivity for γ and δ isoforms in treatment of CLL 
and inflammatory and autoimmune conditions Approved [25,28] 

Idelalisib PI3k-δ in-
hibitor 

Inhibits δ isoform in hematopoietic cells to slow B-
cell cancer proliferation 

Approved [25,29] 

Umbralisib PI3k-δ in-
hibitor 

Inhibits δ isoform and casein kinase 1ε in treatment 
of CLL and other lymphomas 

Approved [25,30] 

TL117 
Pan-PI3k 
inhibitor 

Combination therapy with paclitaxel to treat head 
and neck squamous cell carcinoma I/II 

NCT04843098, 
[25] 

Figure 1. Overview of PI3k pathway. PI3k is activated by various surface receptors, including
toll-like receptors (TLRs), receptor tyrosine kinase (RTK), and g-protein coupled receptors (GPCRs).
The kinase domain phosphorylates phosphatidylinositol biphosphate (PIP2,) converting it to phos-
phatidylinositol triphosphate (PIP3). PIP3 subsequently phosphorylates Akt, which serves as a
messenger to initiate several metabolic pathways, several of which are illustrated above. PI3k plays
an important role in regulating cell survival and proliferation, actin reorganization, and inflammation.

Table 1. PI3k inhibitors that are FDA-approved or under current investigation in clinical trials.

Drug Name Class Mode of Action Clinical Trial Stage Reference

Alpelisib PI3k-α inhibitor
Selectively targets the mutated PI3k-α in

many solid tumors to suppress
increased activity

Approved [25,26]

Copanlisib Pan-PI3k inhibitor
Targets all class I PI3k isoforms to hinder

B-cell proliferation and survival in
follicular lymphomas

Approved [25,27]

Duvelisib PI3k-γ, δ inhibitor
Selectivity for γ and δ isoforms in treatment

of CLL and inflammatory and
autoimmune conditions

Approved [25,28]

Idelalisib PI3k-δ inhibitor Inhibits δ isoform in hematopoietic cells to
slow B-cell cancer proliferation Approved [25,29]

Umbralisib PI3k-δ inhibitor Inhibits δ isoform and casein kinase 1ε in
treatment of CLL and other lymphomas Approved [25,30]

TL117 Pan-PI3k inhibitor Combination therapy with paclitaxel to treat
head and neck squamous cell carcinoma I/II NCT04843098, [25]

GSK2636771 PI3k-β Blocks β isoform to treat cancers with
PTEN mutations II NCT04439149

Eganelisib (IPI-549) PI3k-γ inhibitor

Used in combination with Tecentriq and
Abraxane to treat triple-negative breast

cancer or with Tecentriq and Avastin to treat
renal cell carcinoma

II NCT03961698

AZD8186 PI3k-β inhibitor
Combination therapy with docetaxel to treat

solid tumors with PTEN or
PIK3-βmutations

I NCT03218826

3. PI3k in Infectious Disease
In 2019, approximately 13.7 million deaths, accounting for over 15% of the global

death rate, were attributed to infections, with 54.9% being linked to just five bacterial
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pathogens [31]. Three of these pathogens—Staphylococcus aureus, Pseudomonas aeruginosa,
and Klebsiella pneumoniae—are part of the ESKAPE group (Enterococcus faecium, S. aureus, K.
pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterobacter spp.), which are notorious for
their virulence and antibiotic resistance [32]. The rise in antimicrobial resistance, coupled
with the stagnation of antibiotic discovery, has ushered in the “Resistance Era”, underscor-
ing the urgent need for novel approaches to combat infections [33]. One promising avenue
involves repurposing approved drugs that are not currently indicated for infections. Even
without direct antimicrobial effects, these drugs can influence the host–pathogen interface
by enhancing or protecting host immune cells or by sensitizing bacteria and inhibiting
their virulence [34]. While tumor and infection environments differ, they share common
cytokines and cell types that are involved in inflammatory responses [35]. PI3k also plays
a role in both conditions, as bacteria can exploit host PI3k enzymes to spread or evade
immune detection [36–38]. This overlap highlights the potential of further exploring PI3k
in disease treatment. The γ and δ isoforms of PI3k, enriched in lymphoid and myeloid
cell populations, are particularly significant in immune responses [39,40]. Recent stud-
ies in cancer and chronic inflammatory disease models have uncovered key roles of the
PI3Kγ isoform in macrophage polarization, myeloid cell trafficking, wound healing, and
fibrosis [24,41–46].

The epithelial layer serves as the first barrier to infection, making it an ideal start-
ing point for investigating the role of PI3k in host–pathogen interactions (Table 2). The
bioterror threat pathogen Bacillus anthracis relies on spore internalization for dissemination
upon inhalation. However, treatment with the pan-Class I PI3k inhibitors wortmannin
and LY294002 significantly attenuated spore internalization by blocking the actin activity
that is required for spore entry into epithelial cells [47]. Chlamydia trachomatis, the most
common bacterial sexually transmitted infection, manipulates the PI3k pathway to prevent
apoptosis in infected HeLa cells. This effect was reversed with LY294002, which restored
pro-apoptotic protein function [48]. Similarly, HeLa cells are vulnerable to invasion by the
neonatal pathogen group B Streptococcus, but this invasion was significantly disrupted
with LY294002 treatment [49]. S. aureus internalization in endothelial cells was linked to Akt
phosphorylation, with upstream PI3k inhibition by LY294002 and wortmannin abolishing
bacterial entry [50]. The Gram-negative nosocomial pathogen P. aeruginosa also activates
the PI3k pathway in epithelial cells during infection, and PI3k blockade reduces bacterial in-
ternalization [51]. Helicobacter pylori, the causative agent of gastric ulcers, triggers persistent
PI3k/Akt pathway activation in gastric epithelial cells, leading to increased reactive oxygen
species production. This damaging process was blocked by LY294002 or the antioxidant
N-acetyl cysteine [52]. Thus, while epithelial cells serve as a critical first line of defense,
they can also be manipulated by pathogens to enhance virulence.

If a pathogen breaches the epithelial layer, it encounters immune cells such as neu-
trophils, where PI3k plays a key role in regulating apoptosis, motility, and tissue infil-
tration [53]. Neutrophils employ multiple forms of programmed cell death to maintain
homeostasis and support innate defense. These include apoptosis, which reduces intra-
cellular niches for pathogen replication, and the release of neutrophil extracellular traps
(NETs), which ensnare bacteria in an antimicrobial meshwork [54]. As a regulator at the top
of multiple signaling cascades, PI3k mediates several anti-apoptotic effects in neutrophils.
These include increased transcription of anti-apoptotic proteins such as Mcl-1, Bcl-2, and
Bcl-xL, as well as the inhibition of death caspases and cytochrome C release from mito-
chondria [55]. In PI3kγ-deficient mice, neutrophils show increased apoptosis under both
basal and LPS-stimulated conditions, attributed to reduced activation of NF-κB and CREB
and decreased levels of Mcl-1 and Bcl-xL [55]. The zoonotic pathogen Francisella tularensis
hijacks and delays neutrophil apoptosis, but treatment with LY294002 accelerates apoptosis
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and restores homeostasis during infection [56]. Similarly, multiple Chlamydia species inhibit
neutrophil apoptosis via IL-8 and PI3k/NF-κB activation, an effect that is reversed by
LY294002 treatment [57,58]. PI3kγ also facilitates the invasion of the foodborne pathogen
Campylobacter jejuni. In mice treated with the PI3kγ inhibitor AS252424, bacterial counts in
the spleen and mesenteric lymph nodes were significantly reduced due to decreased neu-
trophil overactivity and migration [59]. In zebrafish infected with P. aeruginosa, neutrophil
infiltration and motility in response to injury were reduced by LY294002, which inhibited
PI3k activity, which is essential for tail contraction and actin polarity [53,60]. Given its
central role in regulating apoptosis and cellular motility, PI3k acts as both a mechanism for
bacterial immune evasion and a promising therapeutic target (Table 2).

Similarly to bacteria, multiple viruses exploit the anti-apoptotic capabilities of PI3k to
prolong host cell survival, thereby enhancing viral replication and release [61–63]. Recent
studies on SARS-CoV-2, the virus that is responsible for COVID-19, and other coronaviruses
suggest that PI3K/mTOR inhibitors hold therapeutic potential [64,65]. Building on research
into the role of PI3k and IPI549 in cancer, a collaboration at our university uncovered ben-
eficial effects of these inhibitors in SARS-CoV-2 infection models and severe bacterial
infections [42,66]. Lung tissue from COVID-19 patients was found to overexpress the gene
for PI3kγ. When the PI3k inhibitor IPI549 was administered to Syrian golden hamsters
infected with SARS-CoV-2, it significantly reduced neutrophil accumulation and lung
inflammation [67]. RNA sequencing in ACE2 transgenic C57BL/6 mice treated with IPI549
revealed downregulation of inflammatory cytokine expression. Similarly, IPI549 improved
survival in aged BALB/c mice infected with SARS-CoV-2. Further studies demonstrated
that IPI549 treatment enhanced lung healing and vascularization. Experiments using PI3kγ
knockout C57BL/6 mice replicated many of these effects, showing reduced inflammation
and immune cell recruitment in various respiratory disease models [67]. In systemic infec-
tion with methicillin-resistant Staphylococcus aureus (MRSA), PI3kγ knockout mice exhibited
improved survival rates and reduced serum IL-1β levels and maintained bacterial loads
and phagocytic activity that were equivalent to wild-type mice [67]. Moreover, in murine
cells stimulated with LPS, IPI549 treatment led to reductions in inflammatory markers
such as TNF and IL-6. These findings highlight the critical role of PI3k in modulating
inflammation during infectious diseases, supporting its potential as a therapeutic target for
both viral and bacterial infections (Table 2).

4. PI3k Regulation of Macrophage Responses to Infection
Macrophages, key components of innate immunity, serve as a nexus for interactions

and receptors that regulate inflammation and the immune response [68]. The role of PI3k in
macrophage activity is complex, with evidence supporting both pro-inflammatory and anti-
inflammatory effects. Lipopolysaccharide (LPS), a component of Gram-negative bacterial
cell membranes, is widely used to stimulate macrophages via Toll-like receptor (TLR)-4
activation and is a major mediator of sepsis [69–71]. PI3k inhibitors, such as wortmannin,
have been shown to increase nitric oxide (NO) and TNF production in LPS-stimulated
murine macrophages [72]. In human monocytic cells, PI3k inhibition similarly enhanced
TNF and tissue factor (TF) expression in LPS-stimulated THP-1 cells by increasing the
activation of the downstream transcription factors Egr-1, AP-1, and NF-κB [73]. This pro-
inflammatory phenotype was further reflected in PI3kγ-knockout macrophages, which
exhibited increased NF-κB release when stimulated by LPS [42]. These findings collectively
suggest that inhibiting the PI3k/Akt pathway enhances inflammatory responses in TLR-
stimulated macrophages [74].

Conversely, some studies have linked PI3k inhibition to the suppression of inflam-
matory pathways, primarily through its regulation of NF-κB, a key promoter of pro-
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inflammatory gene transcription [75]. In BV2 microglial and RAW264.7 murine macrophage
cells, LPS-induced NF-κB binding activity was attenuated by LY294002 treatment [76,77].
Similarly, in human macrophages, LY294002 significantly reduced the LPS-induced pro-
duction of IFN-γ, a critical cytokine for antimicrobial defense and activation of the innate
immune system [78,79]. Wortmannin also inhibited LPS-induced nitric oxide (NO) pro-
duction, producing effects that were akin to direct NF-κB inhibition in microglial cells [80].
Additionally, natural compounds like pinocembrin and sophoraflavanone G were shown
to reduce PI3k phosphorylation and decrease the production of inflammatory markers,
including IL-1β and TNF, in macrophages [81,82]. These findings suggest that PI3k/Akt
pathway inhibition can effectively control inflammation. However, the effects of PI3k
signaling appear to depend on specific stimuli and the TLR pathways that are involved,
potentially explaining conflicting reports regarding its role in macrophage function [83].
Further investigation into PI3k’s regulation of immune responses is particularly warranted
in the context of live bacterial infection.

Studies on bacterial pathogens such as H. pylori have demonstrated that PI3k regulates
actin cytoskeleton rearrangement during bacterial phagocytosis in murine macrophages,
an effect that is attenuated by PI3k inhibitors such as wortmannin and LY294002 [84]. Le-
gionella pneumophila, which replicates within macrophages, showed up to an 80% reduction
in invasion when J774A.1 macrophages were treated with LY294002 or wortmannin, or
when PI3k was genetically disrupted [85,86]. In group B Streptococcus (GBS)-infected THP-1
cells, PI3k inhibition reduced actin projections, phagocytic uptake, NF-κB nuclear local-
ization, and intracellular bacterial survival while increasing macrophage cell death [87].
Similarly, in P. aeruginosa infections, LY294002 reduced phagocytosis by over 80% [88].
However, PI3k inhibition can also impair the innate immune response. For instance, in
Streptococcus pneumoniae infections, reduced alveolar macrophage recruitment following
PI3k inhibition led to decreased lung bacterial clearance and survival [89]. In the context of
S. aureus infection, PI3k inhibition reduced autophagy and phagocytosis while increasing
NF-κB-mediated cytokine production [90]. These findings suggest that the role of PI3k in
macrophage responses varies depending on the pathogen and cell type, influencing both
pro-inflammatory and anti-inflammatory outcomes (Table 2).

Table 2. The effect of PI3k inhibition on various cell types in the context of bacterial and viral
infections or lipopolysaccharide (LPS) stimulation.

Cell Type Stimulant Effect Reference

A549 (Epithelial) Bacillus anthracis Blocks actin activity and attenuates
spore internalization [47]

HeLa (Epithelial) Chlamydia trachomatis Restores pro-apoptotic functionality [48]

Group B Streptococcus Reduces bacterial internalization [49]

MDCK (Epithelial) Pseudomonas aeruginosa Reduces bacterial internalization [51]

GES-1 (Epithelial) Helicobacter pylori Inhibits bacteria-induced PI3k overactivation and
excessive reactive oxygen species production [52]

BEC (Endothelial) Staphylococcus aureus Reduces bacterial internalization [50]

Human Neutrophils Francisella tularensis Restores homeostatic apoptotic functions
during infection [56]

Chlamydia pneumoniae, C. psittaci Reverses infection-induced delay of apoptosis [57,58]

Murine Neutrophils LPS Increases apoptosis [55]

Campylobacter jejuni Reduces migration and infiltration [59]

Zebrafish Neutrophils Pseudomonas aeruginosa Reduces motility and infiltration to site of infection [60]
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Table 2. Cont.

Cell Type Stimulant Effect Reference

Various Murine and Hamster Cells SARS-CoV-2
Downregulates inflammatory cytokine expression,

improves survival, and reduces immune
cell recruitment

[67]

Human Monocytes LPS Reduces production of IFN-γ [78]

THP-1 (Human Monocytic Cell Line) LPS Enhances TNF and TF expression [73]

Group B Streptococcus Reduces actin projections, phagocytic uptake, and
NF-κB localization [87]

Murine Macrophages LPS Increases nitric oxide and TNF production [72]

LPS Increases release of NF-κB from inhibitory complex [42]

LPS Enhances TNF, IL-6, and TF expression [74]

Helicobacter pylori Blocks internalization of bacteria [84]

Streptococcus pneumoniae Reduces macrophage recruitment, lung bacterial
clearance, and survival [89]

RAW264.7 (Murine Macrophage Cell
Line) LPS Attenuates NF-κB binding to DNA [77]

LPS Reduces LPS-induced nitric oxide, PGE2, TNF, IL-6,
and IL-1β production [82]

Staphylococcus aureus Reduces autophagy and phagocytosis while
increasing NF-κB-mediated cytokine production [90]

J774A.1 (Murine Macrophage Cell Line) Legionella pneumophila Prevents intracellular replication by reducing
bacterial invasion [86]

MH-S (Murine Macrophage Cell Line) Pseudomonas aeruginosa Blocks phagocytosis [88]

Chick Microglial Cells LPS Inhibited nitric oxide production [80]

BV2 (Microglial Cell Line) LPS Attenuates NF-κB binding to DNA [76]

LPS Reduces LPS-induced NF-κB activity, nitric oxide,
PGE2 IL-1β, and TNF production [81]

5. Selected Experimentation
Since pneumonia—a common trigger of sepsis—served as the primary SARS-CoV-

2 model in the recent landmark study on PI3k inhibition to mitigate severe infection-
associated inflammatory damage [67], the companion findings in systemic MRSA infection
inspired a subsequent series of experiments [91]. Our objective was to build upon these
studies using a live bacterial model of MRSA and eganelisib (IPI549). We aimed to confirm
the reduction in inflammatory markers that was observed in the murine model and to
demonstrate a modest but statistically significant increase in immune cell function in
human cells.

5.1. Bacterial Strains, Cell Lines, and Reagents Used

IPI549 was obtained through a materials transfer agreement (MTA) with the man-
ufacturer Infinity Pharmaceuticals (Cambridge, MA, USA) and from Selleck Chemicals
(Houston, TX, USA, #S8330). The doses used were verified to be non-bactericidal. The
MRSA strain USA300-TCH1516 (ATCC, Manassas, VA, USA) was cultured in Todd–Hewitt
broth (THB) at a 1:100 ratio to the mid-logarithmic phase and washed with PBS before
use. The THP-1 human monocytic cell line (ATCC, Manassas, VA, USA, #TIB-202) was
maintained in RPMI 1640 (ThermoFisher, Waltham, MA, USA, #11835-030) with 10% FBS
(Cytiva, Marlborough, MA, USA, #SH30088.03), 4.5 g/L glucose (ThermoFisher, Waltham,
MA, USA, #A2494001), 10 mM HEPES (ThermoFisher, Waltham, MA, USA, #15630-080),
1 mM sodium pyruvate (ThermoFisher, Waltham, MA, USA, #11360-070), and 0.05 mM
2-mercaptoethanol (ThermoFisher, Waltham, MA, USA, #21985-023). THP-1 cells were
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differentiated with 25 nM phorbol 12-myristate 13-acetate (PMA) (Sigma, St. Louis, MO,
USA, #P1585) for 24 h before being washed with media for another 24 h before experiments.
Immortalized murine macrophage wild-type and PIK3cg knockout cells, derived from
mouse bone marrow and immortalized through J2 retrovirus transduction (in the labs of
Judith Varner, UCSD, and Diana Hargreaves, Salk Institute) were cultured in DMEM with
L-glutamine, glucose, and sodium pyruvate (Corning, Corning, NY, USA, #10013CV).

5.2. Statistical Analysis and Programs

Statistical analyses were performed with GraphPad Prism v10. Two-way ANOVA was
used to compare murine wild-type and knockout macrophages, while one-way ANOVA
and Student’s unpaired t-tests were used to compare significance across groups within
one cell type. A p-value < 0.05 was considered statistically significant.

5.3. PI3k Knockout and Inhibition Reduces Inflammation in Human/Murine Macrophages

Methods: Wild-type and knockout murine macrophages were plated at 500,000 cells
per well in 24-well tissue culture plates (Corning, Corning, NY, USA, #3524) and infected
with MRSA at a multiplicity of infection (MOI) of 1 for 4 h [92,93]. THP-1 cells were
similarly plated and infected, with 1 µM IPI549 (or vehicle control) pretreatment for
1 h before infection, followed by 100 µg/mL gentamicin (MilliporeSigma, Burlington,
MA, USA, #G1397) and 20 µg/mL lysostaphin (MilliporeSigma, Burlington, MA, USA,
#L7386) 1 h post-infection to kill any remaining bacteria. RNA was isolated using Qiagen
RNEasy Mini Kits (Qiagen, Hilden, Germany, #74104), reverse-transcribed, and analyzed
by quantitative real-time PCR (qRT-PCR) with SYBR green on a BioRad CFX96 Touch Real-
Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA). Gene expression
was quantified using the ddCT method. Primer sequences are presented in Table S1. ELISAs
were performed on harvested supernatants using mouse and human Duoset IL-1β/IL-1F2,
IL-6, and TNF-α kits (R&D Systems, Minneapolis, MN, USA, #DY401, #DY206, #DY410,
#DY201, #DY206, #DY210). Results: A decrease in IL-1β, IL-6, and TNF transcription and
protein secretion was observed in both the knockout murine macrophages and IPI59-treated
THP-1 cells upon MRSA infection (Figure 2A,B).

5.4. PI3k Knockout and Inhibition Reduces NF-κB Colocalization

Methods: Wild-type, knockout murine macrophages and THP-1 cells were plated
at 200,000 cells per well in a Nunc Lab-Tek II 8 Chamber Slide System (ThermoFisher,
Waltham, MA, USA, #154534). THP-1 cells were pretreated with 1 µM IPI549 for 1 h.
The MRSA supernatant, used due to bacterial autofluorescence, was isolated from an
overnight culture, passed through a 0.22 µM filter, concentrated using a 3 kDa MWCO
Amicon Ultra Centrifugal Filter (MilliporeSigma, Burlington, MA, USA, #UFC9003), diluted
at 1:125, and added to the THP-1 cells for 1 h. The cells were fixed with 10% formalin,
permeabilized with 0.25% Triton-X, and treated with an NF-κB p65 antibody (Cell Signaling
Technology, Danver, MA, USA, #8242) and phalloidin-rhodamine (ThermoFisher, Waltham,
MA, USA, #R415). After overnight incubation at 4 ◦C, the cells were exposed to a goat
anti-rabbit IgG secondary antibody (ThermoFisher, Waltham, MA, USA, #A11070) and
DAPI (ThermoFisher, Waltham, MA, USA, #D1306) and then mounted and imaged using
a Zeiss Axio Observer.D1 Inverted Microscope (Zeiss, Dublin, OH, USA). Colocalization
analysis was performed using ImageJ v2.14.0. For the murine macrophage images, the
default automatic threshold was used to create an ROI using DAPI, and colocalization
analyses of the DAPI and NF-κB channels were performed. For the THP-1 images, the
“Huang” threshold was applied to the phalloidin-rhodamine channel alongside a rolling ball
correction, before being merged with the DAPI channel. Image analysis macro commands
are presented in Table S2. Results: Decreased intranuclear NF-κB was observed in both the
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knockout murine macrophages and IPI549-treated THP-1 cells, indicating reduced NF-κB
translocation (Figure 3A–D).
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Figure 2. Pharmacological and genetic inhibition of PI3k suppresses inflammatory cytokine re-
sponses in both human and murine macrophages. Gene expression and ELISA quantified protein
secretions of selected pro-inflammatory cytokines in (A) immortalized murine wild-type and knock-
out macrophages and (B) THP-1 cells treated with 1 µM IPI549 or vehicle, infected with MRSA (MOI
of 1) for 4 h, and treated with 100 µg/mL gentamicin and 20 µg/mL lysostaphin 1 h post-infection.
All data are representative of n = 3 independent experiments, with mean + SEM; ns = no significance,
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 3. Pharmacological and genetic inhibition of PI3k reduces NF-κB translocation to the nucleus
in both human and murine macrophages, without compromising bacterial killing ability. Pearson’s
correlation values for NF-κB colocalization with DAPI as determined by pixel intensity correlation
in (A) murine wild-type and knockout macrophages treated with IPI549 and MRSA supernatant
and (B) THP-1 cells treated with IPI549 and MRSA supernatant. Representative images of NF-κB
immunofluorescence from control and treated (C) wild-type and knockout murine macrophages
and (D) THP-1 cells. NF-κB (in green) and DAPI (in blue). Images are 40× magnification. Bacterial
survival in presence of (E) wild-type or knockout murine macrophages pretreated with vehicle or
1 µM IPI549 and (F) THP-1 cells pretreated with vehicle or 0.01 µM IPI549. (G) Lysis of THP-1
cells treated with vehicle, MRSA, or 0.01 µM IPI549, quantified by LDH release and normalized to
0.3% Saponin-positive control. All data are representative of n = 3 independent experiments, with
mean + SEM; ns = no significance, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

5.5. Pharmacological and Genetic Inhibition of PI3kγ Does Not Compromise Bacterial Killing

Methods: Wild-type, knockout murine macrophages and THP-1 cells were plated at
100,000 cells per well in 96-well tissue culture plates, with the THP-1 cells being pretreated
with 1 µM IPI549 or vehicle control for 1 h (Corning, Corning, NY, USA, #353072). Bacteria
were grown as previously described, opsonized with pooled human serum at a 1:1 ratio
for 5 min, and then incubated with cells at an MOI of 10 for 2 h. The cells were lysed
with 0.3% saponin, incubated on ice for 5 min, diluted in a PBS, plated on Todd–Hewitt
agar, and incubated overnight at 37 ◦C. Colony-forming units (CFUs) were enumerated
the next day. The LDH content in supernatants from THP-1 cells treated with IPI549 and
infected with MRSA was assessed using the LDH-Glo Cytotoxicity Assay kit (Promega,
Madison, WI, USA, #J2380) and quantified with a Perkin Elmer EnSpire Alpha Multimode
Plate Reader (Perkin Elmer, Shelton, CT, USA). Results: Slightly increased bacterial killing
was observed in the knockout macrophages and IPI549-treated THP-1 cells, indicating that
reduced inflammatory cytokines and NF-κB translocation did not compromise macrophage
bacterial killing (Figure 3E,F). Increased cell lysis was observed with concurrent drug
treatment and MRSA infection (Figure 3G).

6. Discussion and Areas of Future Study
The PI3k pathway plays a central role in many types of cancers as a regulator of prolifer-

ation, metabolism, and survival, and it is also crucial for immune cell function [53,68,94–97].
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This review focused on the broad effects of PI3k regulation across various cell types in
response to bacterial infections (Figure 4). Although different pathogens elicit distinct
responses, PI3k generally facilitates internalization and phagocytosis in both epithelial
cells and phagocytes—processes that are suppressed by PI3k inhibition [47,50,84,86]. In
neutrophils, many bacteria exploit the pro-survival effects of PI3k by upregulating anti-
apoptotic proteins and NF-κB. This prevents the programmed cell death that is necessary to
combat infection, allowing for intracellular replication to continue [55–58]. In macrophages,
PI3k exhibits a paradoxical role: it can either enhance or reduce phagocytosis and modulate
the inflammatory response, depending on the specific pathogen trigger [72,76,77,90,98].
The regulation of inflammation by natural products targeting the PI3k pathway further
underscores the pathway’s significance [81,99–101]. Such findings in bacteria also raise
questions about the role of PI3k in other pathogens, including viruses and parasites. As
noted earlier, certain viral infections dysregulate PI3k, and its inhibition has been shown to
restore normal apoptotic function or reduce viral replication [102,103]. Parasites, as eukary-
otic or multicellular organisms, present more complex infection models, and significantly
fewer studies have examined PI3k’s role in parasitic infections. However, the pharmaco-
logical inhibition of PI3k has shown promise in improving outcomes in L. donovani and C.
parvum models [104,105]. Thus, PI3k still remains a compelling target not only for cancer
therapeutics but for repurposing these drugs to treat infections.

Inflammation caused by infection is a major contributor to sepsis mortality, with a
cascade of cytokines triggering an excessive immune response that leads to systemic organ
damage and death [106]. Existing therapies aimed at controlling inflammation, such as
steroids and cytokine-targeting antibodies, have shown limited success and often risk
impairing immune cell function to the extent that infection prevails [107–111]. The recent
discovery of PI3k’s role in modulating the inflammatory response during SARS-CoV-2
infection, particularly in vivo, prompted us to investigate whether this phenotype extends
to human cells. In murine macrophages, knockout of the PIK3CG gene, which encodes
the catalytic subunit of PI3kγ, significantly reduced inflammatory cytokine production.
Similarly, in human THP-1 cells, treatment with the PI3kγ inhibitor IPI549 reduced in-
flammatory cytokine release. This suppression of cytokine expression and release in both
murine macrophages and THP-1 cells was attributed to inhibited NF-κB translocation into
the nucleus. Interestingly, these effects were accompanied by a modest but significant
enhancement in bacterial killing activity and an increase in cell lysis. Although the cell via-
bility decreased, the improvement in bacterial clearance is noteworthy, as programmed cell
death can enhance pathogen elimination [112–114]. While the concentrations of the PI3k in-
hibitor were not directly bactericidal, the ability to modulate the immune response offers a
valuable therapeutic approach. These results align with PI3k’s generally pro-inflammatory
role in bacterial infection. However, these studies are among the first to utilize bacterial
supernatant as a stimulus, suggesting that the role of PI3k in inflammation may depend
on specific physiological signals—whether originating from the host, the bacteria itself, or
secreted virulence factors and other stimuli.

Our studies, along with those of Sheppard and Ghebremedhin et al. [67], confirm
that the PI3kγ isoform plays a significant role in infection-induced inflammation, comple-
menting its well-established function in cancer. This inflammatory role can be effectively
modulated through genetic or pharmacological inhibition, potentially providing an ad-
vantage in combating bacterial infections. Given PI3k’s extensive role in regulating both
proliferative and immune functions across various cell types, it remains a compelling target
for further investigation. Future research should focus on developing novel chemical
scaffolds to modulate the enzyme and on better defining its role in the context of infection.
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Figure 4. Schematic representation of the role of PI3k in infections of different cell types. The inhibi-
tion of PI3k can suppress the internalization of bacteria or spores in epithelial cells, restore apoptotic
pathways, and reduce infiltration in neutrophils. In a live infection model, the inhibition of PI3k can
reduce inflammatory cytokine release, lung inflammation, mortality, and neutrophil recruitment and
activation. The inhibition of PI3k in macrophages may increase or decrease inflammatory cytokine
release, nitric oxide production, and phagocytosis depending on stimulus type.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/antibiotics14030315/s1: Table S1: Primer sequences;
Table S2. ImageJ Analysis Macro Commands.
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