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SUMMARY
Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of
�25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could
reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and me-
tabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected
upon clinical presentation. We interrogated the complexity of serum usingmultiple computational strategies,
which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the pre-
dictive capabilities of those previously reported, particularly when used in combination. Last, we validated
the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings
represent a starting point for the development of a prognostic test for identifying high-risk patients at a
time early enough to trigger intensive monitoring and interventions.
INTRODUCTION

Overall mortality rates for Staphylococcus aureus bacteremia

(SaB) range from 20% to 30% (Kern, 2010; van Hal et al.,

2012; Wang et al., 2008) and underlying risk factors for serious

S. aureus infections are expanding (Tong et al., 2015). SaB pa-

tients display a heterogeneous array of disease severity and pa-

tient outcomes (Holland et al., 2014; Rasmussen et al., 2011);

some patients clear the pathogen on first-line therapy, while

others fail to resolve the infection. Extended bacteremia leads

to dysregulation of the host immune response, which is corre-

lated with patient mortality (Minejima et al., 2016; Rose et al.,

2012, 2017). This heterogeneity in SaB complicates the determi-

nation of optimal treatments. The current standard of care is to

administer broad-spectrum antibiotics while awaiting pathogen

susceptibilities to guide treatment decisions. However, blood
C

cultures are not always attainable, and it may take several

days to deduce antibiotic susceptibilities. Any delay in interven-

tion exacerbates patient mortality, especially in sepsis (Dellinger

et al., 2013; Ferrer et al., 2014). In the case of vancomycin, while

resistance is rare, clinical failure is common, revealing shortcom-

ings in predictive power of standard antimicrobial susceptibility

testing (Ersoy et al., 2017). Herein, we explore whether host re-

sponses measured within hours of clinical presentation can

accurately predict mortality risk, which could ultimately inform

appropriate and personalized therapy.

We previously identified immunological biomarkers for SaB

mortality (Rose et al., 2012, 2017) and prolonged bacteremia

(Rose et al., 2017), which were subsequently corroborated in in-

dependent studies (Guimaraes et al., 2019; Minejima et al.,

2016). While these findings represent starting points for ‘‘preci-

sion medicine’’ in SaB, the host response to infection is highly
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Figure 1. Multi-omic Analysis of SaB Pa-

tient Serum

(A) Workflow for SaB serum analysis.

(B) Hierarchical clustering (Pearson) for proteins

detected across all samples.

(C) Abundance of SERPINA5 in control (gray, NN

and HN) and infected samples (blue, HS; red, HM).

(D) ROC curve of SERPINA5 (control versus in-

fected).

Error bars represent interquartile range (IQR). For

all tests, significance values are denoted as

follows: ****p < 0.0001; ***p < 0.001; **p <

0.01; *p < 0.05; ns, not significant. See also Tables

S1, S2, and S3.
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complex and extends beyond immunological parameters. For

example, lactic acidosis and acute kidney injury are associated

with SaB mortality and are potential markers of mitochondrial

dysfunction, reflecting effects on host metabolism (Mikkelsen

et al., 2009; Ralto and Parikh, 2016; Singer, 2014). Thus, a

comprehensive, unbiased assessment of host factors altered

during SaB may elucidate additional features that can predict

patient outcomes and guide therapeutic development.

Here, we construct amolecular snapshot of SaB patient serum

collected upon clinical presentation, providing the earliest view

possible of the in vivo human response to infection. Usingmetab-

olomics and multiplexed quantitative proteomics, we analyzed

samples from two cohorts (>200 individuals), including unin-

fected controls. Through multiple rounds of biomarker analyses,

we defined features with strong individual predictive value, which

increases when used in combination. The depth of analysis was

enhanced through computational methods, which identified

prevalent post-translational modifications (PTMs) and inferred

underlying cytokine signaling networks. These techniques re-

vealedglycopeptidesasmoreprecisebiomarkersanduncovered

carbamylation on serum proteins in patients who succumbed to

infection.Ultimately,weprovide a startingpoint for a rapid clinical

test that identifies patients with highmortality risk. Further refine-

ment of SaB biomarkers will enable clinicians to identify patients
1312 Cell 182, 1311–1327, September 17, 2020
who need intensifiedmonitoring and ther-

apy, rather than responding post hoc to

failures in standard of care.

RESULTS

Overview of Multi-omic SaB Patient
Serum Analysis
We employed a multi-omic approach to

gain a comprehensive view of the SaB

host-pathogen interaction (Figure 1A).

First, a discovery cohort was analyzed

by standard multiplexed proteomics to

assess the ability of serum proteins to

predict SaB patient phenotypes. This

initial analysis identified 1,405 proteins

with a false discovery rate (FDR) <1%

and yielded biomarker candidates asso-

ciated with various disease features
including mortality (Table S1). Based on this analysis, a power

calculation was performed and, together with reported recom-

mendations (Frantzi et al., 2014), we designed a validation cohort

of 200 samples (25 control, 99 SaB survival, 76 SaBmortality). To

deepen our comprehension of the molecular features related to

SaB, the expanded cohort was analyzed through standard pro-

teomic workflows as well as PTM-tolerant and metabolomic ap-

proaches (Figure 1A). Overall, 1,088 proteins (294 across all

samples; Table S2), 5,280 metabolomic features (720 across

all samples; Table S3), and 6,700 modified peptides (332 across

all samples; Table S4) were quantified in this experiment. The

resultant >10,000 features were analyzed with binary compari-

sons to identify biomarkers, and through clustering and network

based approaches to define disease associations within our pri-

mary sample groups (control groups: NN, non-hospital, non-in-

fected; HN, hospital, non-infected; infection groups: HS, hospi-

tal, survival; HM, hospital, mortality).

Hierarchical clustering of the proteomics data showed clear

segregation of the control and infected samples (Figure 1B). In

contrast, SaB survival and mortality groups were intermixed, indi-

cating that the differences between SaBmortality and survival are

subtle. Nevertheless, stratification ofmortality and survival groups

was observed in the clustered dendrogram, indicating the poten-

tial to define mortality biomarkers. As a proof of principle for



Figure 2. Definition of High-Confidence Biomarkers for the Prediction of SaB Patient Mortality

(A) Top 25 EFS proteins (survival versus mortality; ER_RF, error-rate based; Gini_RF, Gini index random forests).

(B) Abundance and ROC curve of fetuin B (survival versus mortality).

(C) Abundance and ROC curve of SVEP1 (survival versus mortality).

(D) Top 25 EFS metabolites (survival versus mortality).

(E) Abundance and ROC curve of metabolite ID-349 (survival versus mortality).

(F) Abundance and ROC curve of metabolite ID-854 (survival versus mortality).

(G) Dual-omic ROC curve (survival versus mortality; Protein: FETUB; Metabolite: ID-349; Combo: FETUB + IGFBP3 + ID-349 + ID-854).

(H) ELISA abundance and ROC curve of fetuin B (survival versus mortality).

(I) Survival curves of fetuin B high (>2.2 mg/mL) and low (<2.2 mg/mL) patients.

(J) Metadata assessment of fetuin B.

Error bars represent interquartile range (IQR). For all tests, significance values are denoted as follows: ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, not

significant. For (B), (C), (E), and (F), Kruskal-Wallis tests with Dunn’s multiple comparison test significance is displayed. For (H), MWU test significance is dis-

played. See also Figures S1 and S2 and Tables S2, S3, S5, and S6.
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distinguishing disease states, we first selected a highly discrimi-

nating protein for predicting infection, rather than mortality. SER-

PINA5 emerged as a top hit (Figure 1C), with a receiver operator

characteristic (ROC) area under the curve (AUC) of 0.9891 (Fig-

ure 1D). This protein had a higher AUC than the standard infection

marker, C-reactive protein (CRP) (WHO, 2014), in the current data-

set (AUC = 0.9691) as well as reported values (maximum AUC =

0.92) (Liu et al., 2010; Park et al., 2014; Póvoa et al., 2005). This

example demonstrates the power of unbiased proteomics for

biomarker discovery.

Definition of High-Confidence Biomarkers to Predict
SaB Patient Mortality
Our first goal was to define high-confidence biomarkers to pre-

dict SaB patient mortality. To rank biomarkers, we took an

ensemble feature selection (EFS) approach (Neumann et al.,

2017), which applied multiple feature selection algorithms, then

aggregated and ranked the results. This method can avoid

biases associated with individual feature selection algorithms
(He and Yu, 2010) and was applied to the two primary datasets

to rank top biomarkers (Proteomics Figure 2A; Metabolomics

Figure 2D). Due to the incompatibility of EFSwith missing values,

features with missing values were ranked usingMann-Whitney U

(MWU) tests and the average from both strategies was taken for

final biomarker rankings (Tables S2 and S3). Importantly,

biomarker ranks by EFS and MWU tests were concordant (Fig-

ures S1A and S1B). The highest ranked protein biomarkers

were fetuin B (Figure 2B), heparin cofactor II (SERPIND1, Fig-

ure S1C), and carnosine dipeptidase 1 (CNDP1, Figure S1D),

all with decreased serum levels. The decrease in serum fetuin

B was also captured in the initial cohort, despite a low number

of mortality samples analyzed (Figure S1E). Our top biomarkers

with increased serum levels were SVEP1 (Figure 2C), cystatin

B (CSTB, Figure S1F) and pulmonary surfactant-associated pro-

tein B (SFTPB, Figure S1G). Applying a similar approach to the

metabolomics data, we found that the highest ranked bio-

markers were unidentified MS features (Figure 2D). However,

these molecules showed considerable predictive utility (Figures
Cell 182, 1311–1327, September 17, 2020 1313



ll
Resource
2E and 2F), similar to our top-ranked protein biomarkers (ROC

AUC =�0.75; p < 0.0001). The top ranked, identifiedmetabolites

include 2-Hexadecanoylthio-1-Ethylphosphorylcholine (HEPC,

Figure S1H) and sphingosine-1-phosphate (S1P, Figure S1I) by

EFS and thyroxine (T4, Figure S1J) and decanoyl-carnitine (Fig-

ure S1K) by MWU test.

The EFS approach ensures that the top-ranked biomarkers

are not correlated to one another and therefore could be used

in combination for the enhanced prediction of SaB patient mor-

tality (Williams, 2009). Using the top two markers from both

workflows enhanced predictive power relative to the individual

markers alone (Figure 2G). To support the proteomics workflow,

we validated fetuin B (Figure 2H) and other top biomarkers (Fig-

ures S1L and S1M) in a subset of samples using enzyme-linked

immunosorbent assays (ELISAs) (fetuin B AUC = 0.8945). Our re-

sults indicate that patients with low fetuin B (<2.2 mg/mL) had

significantly reduced survival compared to patients with high fe-

tuin B (Figure 2I).

An important factor to consider when performing biomarker

analyses is the influence of confounding factors (Ensor, 2014).

To investigate this matter, we performed a metadata-wide

assessment for every multi-omic feature detected (Proteomics

Table S5; Metabolomics Table S6). We found that all top bio-

markers (up and downregulated) are predominantly associated

with infection and mortality, with minimal associations to other

clinical metadata (Proteomics Figures 2J and S2A–S2G; Metab-

olomics Figures S2H–S2M). The next most common metadata

associated with the top biomarkers are dialysis and serum creat-

inine levels, both related to kidney function (Levey et al., 1988)

and mortality in bacteremia (Nielsen et al., 2015; Vandecasteele

et al., 2009). Indeed, there was negligible influence of typical

confounding variables (e.g., age, gender) on the top SaB mortal-

ity biomarkers. Overall, these results provide an extensive list of

biomarkers associated with SaB mortality.

PTM-Tolerant Analysis of Serum Samples Enables the
Identification of Disease-Associated PTMs
Serum is a notoriously difficult sample to analyze via proteomics

(Chandramouli and Qian, 2009; Geyer et al., 2017), attributed to

the large dynamic range of proteins and high numbers of PTMs.

Thus, standard serum proteomic searches fail to identify greater

than 90%of the spectra acquired frommass spectrometry (MS)-

based proteomics (Dey et al., 2019). We hypothesized that pred-

icating abundant PTMs could facilitate a PTM-inclusive analysis

and identify more spectra. PTM identification and localization is

optimally derived from high-resolution mass spectra (Chick

et al., 2015; Devabhaktuni et al., 2019). Thus, all subsequent

PTM analyses was performed on high-resolution MS2 data ac-

quired in the Orbitrap mass analyzer. The high-resolution data

displayed similar results to low-resolution data when matching

unmodified peptides in terms of peptide spectrum matches

(PSMs) (Figure S3A), identification of peptides (Figure S3B) and

proteins (Figure S3C), and quantification by both spectral count-

ing (Figure S3D) and TMT-based quantification (Figure S3E). To

identify global modifications in the serum proteome, we used

molecular networking to group similar spectra that differ by reg-

ular mass shifts (Wang et al., 2016). Overall, we networked >80%

of the MS2 spectra (Figure 3A), suggesting that many of the pep-
1314 Cell 182, 1311–1327, September 17, 2020
tides identified in the standard database search have variant

forms. We observed highly abundant PTMs present in our data

(Figure 3B), including expected artifacts such as oxidation of

methionine (+15.99), alkylation of cysteine (+57.02) as well as

unanticipated modifications such as carbamylation (+43.005),

dioxidation (+31.99), and formylation (+27.99). Notably, the

glycan moieties fucose (+146.06), hexose (+162.05), and sialic

acid (+291.1) were also highly abundant. This suggests that the

peptides captured in our MS analysis are rich in PTMs, compli-

cating identification through traditional strategies.

To capitalize on these discoveredmodifications, we employed

a PTM-tolerant search strategy, which achieved a doubling of

the serumPSM rate (Figure 3C). Non-glycanmodifications called

in the PTM-tolerant search were correlated with the number of

edges from the GNPS analysis (Figure 3D). Further, >85% of

glycosylation sites detected have been previously reported in

Uniprot (Figure S4A), supporting their identification as true glyco-

peptides. The distribution of mass errors from the modified pep-

tides was nearly identical to the standard search (Figure S4B),

indicating spectral identification quality is maintained. We also

found that the total PSMs and unique peptides per protein

were highly correlated between the standard and the PTM-

tolerant search (Figures S4C and S4D). We noted that the

PTM-tolerant search increased the number of unique peptides

detected for low-abundant proteins; proteins with the fewest

unique peptides in the standard search gainedmore unique pep-

tides in the PTM-tolerant search than proteins that had many

unique peptides originally detected (Figure S4E). Gene ontology

(GO) analysis (Huang et al., 2007) revealed that the majority of

proteins with boosted unique peptides were immunoglobulins

(Figure S4F), but a number of intracellular proteins showed

similar gains (Figure S4G) and had PTMs that demonstrated sig-

nificant associations to hospitalization (Figure S4H) and infection

(Figure S4I). Our results demonstrate that predicting abundant

modifications can inform search strategies, yielding higher

PSM rates and increased confidence in low-abundant proteins

while also identifying disease-associated PTMs.

We reasoned that modified peptides might act as biomarkers

for predicting infection or SaBmortality. Again, due to the incom-

patibility of EFS with sparse data, we ranked PTM biomarkers

solely on MWU test p values. Intriguingly, the top biomarkers

for infection and mortality were both glycans on alpha-2-HS-

glycoprotein (AHSG), also known as fetuin A (Figures 3E and

3F). The support for these two glycans is strong as evidenced

by >50 unique PSMs detected for each peptide, some of which

have Byonic scores >400 (corresponding to an FDR <0.1%)

(Bern et al., 2012). Individually, these biomarkers demonstrated

higher ROC AUC values than our top unmodified protein bio-

markers (0.9981 versus 0.9891 for infection and 0.8066 versus

0.7548 for mortality, Figures 3E and 3F). Unmodified fetuin A

was also a top biomarker for both infection and mortality (Fig-

ure 2A), although the observed fold change was higher for the

glycans than the total protein (Figure 3G). The metadata

confirmed these biomarkers are primarily associated with infec-

tion and mortality (Figure S4J; Table S7). This suggests that

these glycans may yield better predictive value than the unmod-

ified protein alone.When used in concert with our top protein and

metabolite biomarkers (nine total molecular features), these



Figure 3. PTM-Tolerant Analysis of SaB Patient Serum

(A) Pie chart of networked MS2 spectra.

(B) Network edge histogram with top mass shifts highlighted.

(C) Percentage of MS2 spectra matched in both workflows.

(D) Correlation of network edges and PTMs detected in PTM-tolerant workflow.

(E) Abundance and ROC curve of AHSG N156 HexNAc(4)Hex(5)NeuAc(2) (control versus infected).

(F) Abundance and ROC curve of AHSG N156 HexNAc(4)Hex(5)NeuAc(1) (survival versus mortality).

(G) Fold changes of total AHSG protein and glycosylations of N156 for infection and mortality samples.

(H) Multi-omic ROC curve (survival versus mortality).

(I) Abundance of modified peptides assigned to the mortality-specific cluster.

(J) Distribution of peptide counts and modifications types of albumin (ALB) and serotransferrin (TF).

(K) Albumin mortality associated PTM plot depicting modified peptide abundance (left) and modified peptide abundance normalized to protein levels (right).

Error bars represent interquartile range (IQR). For all tests, significance values are denoted as follows: ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, not

significant. For (E) and (F), Kruskal-Wallis tests with Dunn’s multiple comparison test significance is displayed. See also Figures S3 and S4 and Tables S2, S4,

and S7.
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glycans enhanced predictive power (AUC = 0.92, Figure 3H). To

our knowledge, this approach generated the top model, based

on AUC and n, for predicting mortality from any infection using

patient-derived biomarkers.

The PTM analysis above was performed on the normalized raw

abundances for each modified peptide without consideration for

protein level changes. However, the modified peptide abun-

dances can also be normalized to the protein level to investigate

divergent regulation of the protein and associated PTMs. Overall,

themodified peptides had a positive correlation to their respective

protein levels (Figure S4K). Similarly, when we compare the fold

changes of the modified peptide abundance to the protein

normalized values for infection andmortality changes,we observe

correponding results (Figures S4L–S4M) with some exceptions.

To better understandwhichmodifications deviated from their pro-

tein level, we first filtered the protein-normalized PTMswith signif-
icant alterations in any of the primary sample groupings (i.e., NN,

HN, HS, HM) using ANOVA (p < 0.05), then clustered these fea-

tures based on expression, which revealed interesting trends in

modified peptides (Figure S4N). Most striking was a cluster of

modifications (Cluster 2) that showed a stark increase in abun-

dance specific to the mortality samples (Figure 3I). Nearly half

(46%) of the modified peptides in this cluster were assigned to

only two proteins: albumin and serotransferrin (Figure 3J) with

the modifications being primarily carbamylation and formylation

(Figure 3J). Comparing the relative changes in the modified pep-

tide to the total protein abundance for albumin (Figure 3K), we

noted that, while total albumin levels dropped upon infection

and were reduced further in mortality, albumin was modified at

a higher level in the mortality group (Figure 3K). Modifications on

serotransferrin demonstrated a similar trend (Figure S4O).

Together, this analysis enabled a deeper interrogation of
Cell 182, 1311–1327, September 17, 2020 1315



Figure 4. Clustering of Proteomics/Metabolomics Data into Disease-Relevant Modules

(A–C) K means clustered heatmap (A), protein association network (B), and module cross-talk network (C) of all significantly altered proteins (ANOVA p < 0.05)

across the four primary groups. In (B) and (C), nodes are colored as in (A).

(D–G) K means clustered heatmap (D), molecular networking overview (E), within network co-regulation pie chart (F), and module cross-talk network (G) of all

significantly altered metabolites (ANOVA p < 0.05) across the four primary groups. In (E) and (G), nodes are colored as in (D).

See also Figures S5 and S6 and Tables S2 and S3.
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serum-derived proteomics data and linkedmultiple, distinct PTMs

to increased SaB mortality.

Unbiased Clustering of SaB Disease Modules
Beyond defining biomarkers to predict SaB mortality, we sought

to further understand the effects of S. aureus on the human

serum landscape using our multi-omic dataset. Performing a

similar clustering approach used for the PTM analysis, the prote-

omics data were grouped into 6 clusters (Figure 4A) and the me-

tabolomics data into 7 clusters (Figure 4D), revealing expression

profiles of interest. Proteomics cluster 2 (C2) captured the host

response to infection regardless of mortality status, including

CRP, serum-amyloid proteins 1 and 2, and other acute-phase

components (Figures S5A–S5E). Clusters 4, 5, and 6 showed in-

creases (C5) and decreases (C4 and C6) in the mortality group

making them prime clusters for investigation. For clarity, the
1316 Cell 182, 1311–1327, September 17, 2020
mortality-associated proteomics clusters were renamed accord-

ing to their expression direction and magnitude compared to

control samples (C4, pMortality�; C5, pMortality+; C6,

pMortality�; p, proteomics). Similarly, we renamed the most

interesting metabolomics clusters according to their mortality

expression directions and magnitude (C1, mMortality++; C3,

mMortality+; C4, mMortality�; m, metabolomics).

To examine the crosstalk of proteins between clusters, we

performed a functional association analysis on the clustered pro-

teins (Szklarczyk et al., 2019) (Figure 4B). Interestingly, we found

the largest number of connections between proteins within the

pMortality+ and pMortality� clusters (Figure 4C), even though

they change in opposite directions relative to the control pa-

tients. This suggests that proteins that increase in expression

may impact the decrease in expression of another protein, and

vice versa.
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Due to their association with SaB mortality, we used GO anal-

ysis on mortality-associated protein clusters to define their func-

tional roles (Figures S4F–S4H). While the pMortality� cluster had

few, low-significant enrichments (Figure S5F), the pMortality+

and pMortality� clusters had multiple, highly significant func-

tional groups enriched. Cluster pMortality+ is dominated by

extracellular matrix (ECM) and insulin-like growth factor binding

proteins (IGFBPs) and has a moderate enrichment for tumor ne-

crosis factor (TNF)/ interleukin-1 (IL-1) response (Figure S5G).

The ECM adhesion proteins ICAM1 and VCAM1 have previously

been shown to be elevated in SaB patients (Söderquist et al.,

1999), and TNF can be used as mortality biomarkers in humans

(Rose et al., 2012). However, the enrichment for IGFBPs in this

cluster represents an unexpected finding. In contrast,

pMortality� was enriched for protease inhibitors, complement/

coagulation cascade members, and lipoproteins (Figure S5H).

A decrease of lipoproteins is well described in sepsis (van Leeu-

wen et al., 2003), and the reduction in complement/coagulation

is consistent with the proteolytic activation of these proteins.

We also noted that a subset of IGFBPs were present in this clus-

ter and possessed some of the most significant p values, which

is particularly interesting given the presence of other family

members in pMortality+ (discussed further below).

While functional association tools are absent for metabolic

data interpretation, metabolites can be grouped based on MS2

spectra using molecular networking (Wang et al., 2016). This

analysis results in the formation of metabolite networks with

structural similarity. For data visualization, we overlaid the K-

means cluster color onto the individual metabolites in these net-

works (Figure 4E). A bird’s eye view of the data revealed that no-

des within a specific network were commonly assigned to the

same expression cluster. In fact, >95% of molecular networks

had at least half of their nodes co-regulated (Figure 4F). In addi-

tion, some clusters of similar expression profiles were often con-

tained within the same networks, such as mMortality+ and

mMortality++ (increased in infection/mortality) and clusters 6

and 7 (increased in hospitalization) (Figure 4G). Together these

findings suggest that structurally related metabolites are often

co-regulated, offering more support for their importance in the

host response to infection.

Using a combination of molecular networking, spectral library

matching, and ClassyFire, we were able to provide identity infor-

mation for nearly half (2,412/5,280, 46%) of the observedmetab-

olomic features (Figure S5I). Spectral library matches were

generally assigned the proper class of molecule by ClassyFire

(83/86, 97%), indicating good agreement between the two tools.

Additionally, the ontology provided by ClassyFire provided

further coverage of networked metabolites (e.g., subnetwork

13, acyl-carnitines [Figure S5K]; subnetwork 15, bile acids and

fatty acyls; subnetwork 45, glycerophosphocholines [Table S3])

supporting their similarities. While only 20% (481/2,412) of fea-

tures with molecular information were identified using spectral li-

braries or ClassyFire, a much larger number of features are inter-

pretable using molecular networks (Figure S5I).

To identify metabolites related to SaB, we first looked for com-

pound classes that were enriched in mMortality clusters. It was

found that all the significantly altered acyl-carnitines (ACs, 7/7

features) and steroid/steroid derivatives (6/6 features) were as-
signed to mMortality+ or mMortality++. In contrast, significantly

altered indoles were almost exclusively assigned to the

mMortality� cluster (4/5 features). Previous literature supports

increased ACs (Puskarich et al., 2018), linked to liver dysfunc-

tion, and decreased indoles (Zeden et al., 2010) (e.g., trypto-

phan) in sepsis. The increased levels of steroids, including hy-

drocortisone, could be related to the inability of the patients to

metabolize these treatments due to liver dysfunction (Schiffer

et al., 2019).

Next, we screened for networks that contain multiple nodes

from mMortality clusters. These include, among others, the AC

network (Figure S5K), and networks containing bilirubin (Fig-

ure S5L) and biliverdin (Figure S5M). Bilirubin and biliverdin

themselves were not associated with mortality; however, there

were related molecules in these networks that went unidentified

but had associations with mortality. Interestingly, there were

many 14 Da edges in these networks, indicating methylation.

Bilirubin/verdin both possess carboxylic acid functional groups,

which are amenable to Fischer esterification in the presence of

an alcohol. While these analogs may be the result of methanol

extraction during sample preparation, their associations with

mortality make them candidates for further study. We also

discovered networks of co-regulated, unidentified metabolites

that were associated with mortality and infection (Figure S5N).

This unknown molecular network has a number of high-molecu-

lar-weight mass shifts, which may assist in determining the iden-

tity of these features. One of the benefits of using GNPS is the

‘‘living data’’ concept wherein the data are continuously reana-

lyzed (Wang et al., 2020). As GNPS matures, these molecules

may be identified, which would allow for investigation into their

relation to SaB.

Data Integration and Multi-group Classification
We reasoned that integration of the clustered data could be used

to identify relationships between proteins and metabolites.

Further, an integrated dataset could be used to support our bi-

nary biomarker analysis by determining the smallest number of

features needed to classify the samples into our four primary

groupings. Therefore, we took the most confidently identified

features (i.e., identified in at least 50% of samples, 3,500 fea-

tures), inputed missing values and then scaled the datasets

before merging them. A least absolute shrinkage and selection

operator (LASSO) logistic classification algorithm (Friedman

et al., 2010), which penalizes large models, was employed to

identify the minimum features needed to accurately classify the

sample groups. A panel of 98 features was ultimately selected,

which demonstrated stratification of the samples (Figure S6A)

with a mean one-versus-all ROC AUC of 0.9014 for all pairwise

comparisons. As expected, features important for predicting

each group were primarily derived from their respective group-

associated clusters in Figure 4 (proteomics Figure S6B; metab-

olomics Figure S6C).We noted that some of themortality-related

features were highly ranked in both the initial binary comparisons

and the multi-class regression analysis including SERPIND1 and

albumin from the proteomics data and T4 and hydrocortisone

from the metabolomics data. This multi-omic panel reinforces

the binary comparison analysis while highlighting the minimal

features needed to classify all sample groups.
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Next, we examined the integrated dataset for protein-metab-

olite relationships using the mixOmics R package (Rohart

et al., 2017). Many correlations between proteins and metabo-

lites were found (Figure S6D), which can be displayed as a

network overlaid with K-means cluster values (Figure S6E).

From this analysis, we identified clusters of co-regulated fea-

tures associated with mortality (Figure S6E, #1) or hospitalization

(Figure S6E, #2). The mortality-related features were primarily

derived from pMortality� and the mMortality� clusters and con-

tained many of our top biomarkers (e.g., fetuin A/B, albumin,

SERPIND1, and the IGF system) as well as many nodes from

the unknown molecular network in Figure S5G. Most of these

proteins are involved in lipid transport or hemostasis (Fig-

ure S6E). The co-regulation observed between these proteins

andmetabolites suggests that the unknownmetabolites function

in a similar pathway and highlights potential crosstalk between

the multi-omic data.

Global Characterization ofMetabolic Dysfunction in SaB
Mortality Patients
Many of our findings indicate that the most predictive signature

for SaB mortality centers on a broad reprogramming of host

metabolism. Our systems-level analysis enables a comprehen-

sive assessment of major host metabolic pathways. For

example, we quantified every member of the IGF signaling

pathway, which demonstrated divergent regulation in our mor-

tality-associated protein modules. Specifically, IGFBP1, 2, 4,

and 7 were assigned to pMortality+ (Figure 5A), while IGFBP3,

5 and IGFALS were in pMortality� (Figure 5B). IGFBPs function

by binding to and stabilizing IGF-I and II in serum (Baxter,

2014). The binding of IGFs to IGFBP1, 2, 4, or 7 results in the for-

mation of binary complexes that extend the half-life of IGFs from

2 to 30 min. However, if both IGFBP3 (or 5) and IGFALS bind

IGFs, forming a ternary complex, this stabilization is increased

up to 24 h. Given the expression patterns, we expect the amount

of IGFs to decrease as the constituents of the ternary complex

decrease. Indeed, we noted a significant decrease in IGF-II

with increasing disease severity and a similar trend with IGF-I,

although the latter results did not attain statistical significance

(Figure 5C). Further, a comparison of the correlations between

IGFI and II with all the IGFBPs detected in our dataset revealed

positive correlations of IGFs with IGFBP3, 5 and ALS but nega-

tive correlations with the rest of the IGFBPs (Figure 5D).

Together, these data suggest that SaB mortality is associated

with a decrease in the IGFBP ternary complex and an increase

in binary complexes, resulting in lower levels of circulating IGFs.

Given the striking association of the IGF systemwith SaBmor-

tality and the role of IGFs in metabolism, we sought to further un-

derstand thismetabolic dysfunction. Thus, wemined the data for

other features related to general host metabolism. A signature

derived from the GO analysis of our pMortality clusters, is the

general decrease in apolipoproteins upon infection, which

further decreases in SaB mortality patients (Figure 5E). A deple-

tion of lipoproteins in response to infection is known and pro-

posed to be a prognostic marker for severe sepsis (Christof-

fersen and Nielsen, 2012; Sharma et al., 2019). Our results

support these findings and establish a link between this phe-

nomenon and SaB in addition to non-specific sepsis.
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We also uncovered evidence for metabolic dysfunction within

our metabolomics dataset. The most prominent single feature

was thyroxine (T4), a master regulator of host metabolism. T4

was a top-ranked biomarker from the binary comparison anal-

ysis and also selected for inclusion in the integrated multi-class

regression model. We noted a similar trends in thyroxine-binding

globulin (SERPINA7; Figure 5F) and transthyretin (TTR; Figure 5F)

both of which bind to and stabilize T4 in circulation (Schussler,

2000), further supporting the reduction in T4 levels. Thyroid

dysfunction during non-specific sepsis is well characterized

(Bello et al., 2009; Plikat et al., 2007); however, it has not been

previously associated with SaB infections or mortality.

Another connection of metabolism with SaBmortality is the in-

crease in AC abundance inmortality patients. ACs are involved in

fatty acid metabolism (McCoin et al., 2015), and the increased

serum levels here are likely a signature of beta-oxidation

dysfunction in the liver. Unlike T4, which was not within a molec-

ular network, the ACs were found to be part of larger network of

metabolites (Figures 5G and S5K), which was predominantly as-

signed to mMortality+ (yellow) andmMortality++ (red) (Figures 5G

and 5H). Most of these nodes were not identified by spectral li-

brary matches; however, we noted many mass shifts of 28 Da,

corresponding to two links in a fatty acid chain (i.e., CH2-CH2).

By following the mass shifts through the molecular network,

we can assign identities to additional nodes such as hexanoyl/

octanoyl-carnitine, which have stronger associations tomortality

than the initially identified decanoyl-carnitine. Many of these no-

deswere also assigned as ACs byClassyFire. Interestingly, there

is a subset of this network that is moderately related to ACs,

which is also associated with mortality and possesses 28 Da

mass shifts suggestive of a fatty acid chain (Figure 5G circle).

Determining the molecular structures of these compounds and

how they impact fatty acid metabolism would give us a deeper

understanding ofmetabolic dysfunction associatedwith SaB pa-

tient outcomes.

Knowledge-Based Analysis of Proteome Alterations
Captures Underlying Cytokine Mortality Signatures
The above results describe a comprehensive assessment of the

molecular features associated with SaB mortality that are

amenable to MS-based analyses. However, major cytokine fam-

ilies, the focus of most infectious disease biomarker studies,

were underrepresented in our dataset. These signaling mole-

cules fall below the standard limit of detection in typical serum

proteomic experiments (Geyer et al., 2017), even in recent at-

tempts at ultra-deep serum proteome coverage (Dey et al.,

2019; Keshishian et al., 2015) but have been shown to play major

roles in disease. Therefore, we designed a computational

approach to infer the relative importance of major cytokine fam-

ilies from our proteomics data using functional protein associa-

tion networks (Figure 6A workflow description in STAR

Methods). To benchmark our approach, we compared the re-

sults to ingenuity pathway analysis (IPA) applied to the same

clusters. We found that the cytokine prediction scores were

highly correlated between both strategies, particularly for IL-6,

TGF-b1, TNF, IL-1b, and IL-10 (Core-5 cytokines, Figure 6B).

Notably, four of these Core-5 cytokines have demonstrated as-

sociations with SaBmortality and/or duration in previous studies



Figure 5. Detection of Metabolic Dysfunction in SaB Mortality Patients

(A and B) Abundance of IGFBP (A) binary and (B) ternary complex members.

(C) Abundance of IGFI and II.

(D) Correlation matrix of IGF-related proteins.

(E) Heatmap of apolipoprotein abundance.

(F) Abundance of thyroxine-binding serum proteins.

(G and H) Molecular network (G) and abundance of acyl-carnitines (H). In (G) and (H), nodes and points are colored according to Figure 4D. In (G), nodes are sized

according to ANOVA -log10(p value).

Error bars represent interquartile range (IQR). For all tests, significance values are denoted as follows: ****p < 0.0001; ***p < 0.001, **p < 0.01; *p < 0.05; ns, not

significant. For (A), (B), (C), and (F), ANOVA with Tukey’s multiple comparison test significance is displayed. For (E) and (H), repeated-measures one-way ANOVA

with Holms-Sidak’s multiple comparison test significance is displayed. See also Table S2 and S3.
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(TNF, IL-10, and IL-1b [Rose et al., 2012, 2017]; IL-6 [Guimaraes

et al., 2019]), providing validation for this approach.

In addition to cytokines, IPA reports enrichments for a variety

of categories, such as endogenous molecules, drugs, and en-

zymes. We found that these extended IPA analyses validated re-

sults observed in the MS data such as thyroid hormone (T3), IGF

system (IGFI and II), lipid metabolism (LPL, CETP, LIPC), and

infection/inflammatory responses (H2O2, MAPK, and MAPKK in-

hibitors) (Figure S7A). Although the IPA analysis largely agreed

with our approach, there were differences (IPA: IL-17, IL-1a,

and IL-11; cytokine inference: CCL2, CXCL8, and IL-18 [Fig-

ure S7B]). These differences can be explained by annotation
biases of each tool as even the co-predicted cytokines have

marginal overlap of target proteins (�33%; Figures S7C and

S7D). Nevertheless, cytokines uniquely predicted from each

tool have also been linked to SaB mortality or duration by previ-

ous studies (IL-17, CCL2, CXCL8, and IL-18 [Guimaraes et al.,

2019]). Thus, while the Core-5 cytokines captured the most

probable contributors, a combination of both strategies provides

a more complete view of the underlying cytokine signature and

downstream effectors.

Focusing in on the Core-5 cytokines, we found that most of the

connections were to proteins in pMortality+ (Figure 6C). Regen-

erating a protein association network using only proteins from
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Figure 6. Knowledge-Based Analysis of Cytokines Predicts Major Contributors to Proteomic Alterations and Identifies Core of Modulated

Proteins

(A) Schematic for cytokine inference analysis.

(B) Correlation of the cytokine inference score and IPA upstream regulator analysis score. The Core-5 cytokines are highlighted according to their inflammatory

actions (red, pro-inflammatory; blue, anti-inflammatory).

(C) Edges between the Core-5 cytokines and each mortality-associated K-means cluster as determined by STRING-db.

(D) Refined network of Core-5 cytokines and pMortality+ proteins. Protein nodes are sized according to -log10(p value) determined via ANOVA and highlighted

based their connections to pro-inflammatory cytokines (red), anti-inflammatory cytokines (blue), or both (purple). Cytokine node outlines and neighboring edges

are colored based on pro-inflammatory (red) or anti-inflammatory (blue) activity.

In (A) and (C), heatmap, nodes and bars are colored as in Figure 4A. See also Figure S7.
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pMortality+ that are directly linked to a Core-5 cytokine yielded a

refined network (Figure 6D) that is easier to interpret than the net-

works initially generated (Figure S7E). Similar networks can be

made with the proteins from pMortality–/–– (Figures S7F and

S7G). Delving into the pMortality+ network, we found a subset

of proteins were connected to both pro and anti-inflammatory

cytokines (Figure 6D purple circles). Due to the known imbalance

of pro- and anti-inflammatory cytokines in SaB, these proteins

may be the most interesting for further study. This includes

several proteins that contribute to inflammation resolution (e.g.,

ADIPOQ, MRC1, CD163) and may represent actionable targets

for new therapeutic interventions. Together, this analysis pre-
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dicted the top cytokines that influence the observed proteome

landscape and enables researchers to define disease-associ-

ated pathways to test in functional studies.

T4 and Adiponectin Signaling Influences SaB Outcomes
In Vivo

While the analyses above detail the biomarkers and pathways

altered during SaB, it is unclear whether they are simply by-

standers or functionally contribute to disease outcomes. To

address this gap, we utilized a mouse model of SaB to assess

the influence thyroid hormones and adiponectin signaling on

bacterial burden and overall survival.



Figure 7. Thyroid and Adiponectin Signaling Contributes to SaB Mortality In Vivo

(A) Schematic for treatment plan and mouse model of SaB.

(B) Survival curve of mice given hyperthyroid, hypothyroid, or control treatments and then infected.

(C) Survival curve of mice given hypothyroid or control treatments and then infected.

(D and E) CFUs recovered from the kidney (D) and heart (E) in hypothyroid or control mice 48 h after infection.

(F) Survival curve of mice given AdipoRon or control treatments and then infected.

(G and H) CFUs recovered from the spleen (G) and heart (H) in AdipoRon or control mice 48 h after infection.

Error bars represent interquartile range (IQR). For all tests, significance values are denoted as follows: ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, not

significant. All infections were with 5 3 107 CFU S. aureus except for (B) (1 3 108 CFU). For (D), (E), (G), and (H), MWU test significance is displayed.
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Our multi-omic analysis captured a dysregulation of host

metabolism (Figure 5), including reduced levels of T4 in mortality

patients. Exogenous T4 has been previously shown to be protec-

tive in mouse and rat models of polymicrobial sepsis (Al-Abed

et al., 2011); however, its contributions to SaB remain unclear.
Further, the impact of a hypothyroid state on SaB has not been

tested. To address these questions, we designed an animal

experiment to test whether altering T4 levels could affect survival

in a mouse SaB model (Figure 7A). We treated mice with either a

hypo- or hyperthyroid treatment (Al-Abed et al., 2011; Tsourdi
Cell 182, 1311–1327, September 17, 2020 1321
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et al., 2015) and then intravenously infected the mice and as-

sessed survival. We found that hypothyroid mice had higher

mortality rate than control mice while the hyperthyroid group

had a four times greater survival at 48 h post-infection (p.i.) (Fig-

ure 7B). While the hypothyroid mice died more rapidly, control

animals also succumbed to infection, leaving a small window

to observe differences between the groups. To clarify these re-

sults, we repeated the hypothyroid infection with a lower dose

of S. aureus (50% original inoculum) and harvested organs for

bacterial enumeration. Again, the hypothyroid mice had

increased mortality than the control group (Figure 7C), and,

consistently, the mice surviving at 48 h p.i. had increased bacte-

rial load in their hearts (Figure 7D) and kidneys (Figure 7E), indi-

cating a defect in bacterial clearance.

While the association of T4 with SaB has not been previously

described, dysregulated cytokine production has been previ-

ously associated with SaB mortality and is supported by the

cytokine-inference approach described above (Figure 6). Anti-

inflammatory proteins associated with prominent cytokine sig-

natures may play a role in suppressing the overwhelming im-

mune response observed in bacteremia patients. One of these

anti-inflammatory proteins, ADIPOQ (adiponectin), had not

been linked to SaB, but it is known to induce IL-10 in leukocytes

(Wolf et al., 2004). Given that IL-10 is protective in a mouse SaB

model (Leech et al., 2017), we hypothesized that targeting adipo-

nectin could also improve survival outcomes. To test this hypoth-

esis, we treated mice with a small-molecule activator of the adi-

ponectin receptor, AdipoRon, or vehicle control (Figure 7A), and

utilized the same experimental scheme described above. Treat-

ment with AdipoRon markedly enhanced mouse survival (Fig-

ure 7F) and significantly reduced organ colony-forming units

(CFUs) (Figures 7G and 7H). Altogether, these in vivo studies

demonstrate that stimulation of both the thyroid hormone sys-

tem and adiponectin receptor is protective in a mouse

SaB model.

DISCUSSION

The traditional strategy for defining biomarkers for infectious dis-

eases has been based on a subset of immunological parame-

ters. Here, we establish a new standard of infection-related

biomarker assessment by examining a much broader host

response profile, eliminating the assumption that all clinically

relevant details are immunological. Through a multi-omic

approach, we define numerous features and multi-variate

models that can accurately predict SaB patient mortality. These

features can be paired with previously described cytokine

markers, quantified with more sensitive immunoassays, to

enhance prognostic value. Further investigation is needed to

determine whether these markers are specific to SaB or

conserved in response to other infections. To better understand

the biology underlying SaB mortality, we expanded this study

through the application of additional computational analyses,

an in-depth interrogation of mortality-relevant alterations, and

in vivo validation of therapeutic relevance.

Crude predictors of SaB mortality can be based upon clinical

assessments of the patient (Hawkins et al., 2007; Pastagia et al.,

2012); however, they lack the sensitivity and specificity required
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to serve as reliable stratification methods upon which to individ-

ualize or de-escalate therapy. Due to this ambiguity, treatment

decisions in SaB are based upon ‘‘one-size-fits-all’’ protocols

that originate from empirical clinical experience developed

throughout the antibiotic era (Liu et al., 2011). As a result, im-

provements in mortality in MRSA bacteremia have not kept

pace with other fields of medicine over the past three decades,

despite better drugs and faster diagnostics (Fowler et al.,

2006; Rehm et al., 2008).While combination therapies (e.g., dap-

tomycin plus ceftaroline) offer an appealing approach to improve

survival in SaB, these drugs cost >503 more than vancomycin,

posing considerable economic constraints. Attempts at devel-

oping cheaper combinations have been wrought with toxicity

(Burgess and Drew, 2014; Gomes et al., 2014; Tong et al.,

2020). Utilizing the biomarkers uncovered herein to identify the

20%–30% of patients with high mortality risk on standard ther-

apy would provide a compelling advance in the management

of SaB.

In addition to defining standard protein and metabolite bio-

markers for SaB mortality, we utilized two computational strate-

gies for a deeper analysis. First, using a workflow for the predic-

tion and identification of PTMs, we revealed that the paucity of

identifications in the serum proteome likely derives from modi-

fied peptides, including both serum glycoproteins and small

PTMs. Using refined database-searching techniques resulted

in the identification of our top predictive biomarkers, glycosy-

lated peptides derived from fetuin A. Glycosylation has been

used as biomarkers for various diseases, including cancer (Silsir-

ivanit, 2019), Alzheimer disease (Regan et al., 2019), and inflam-

matory conditions (Gornik and Lauc, 2008). However, this is the

first time that host glycosylation patterns have been linked to hu-

man SaB mortality, which could provide a useful clinical tool in

the future.

Intriguingly, our top unmodified biomarker was fetuin B, and

our topmodified biomarker was glycosylation of fetuin A. Fetuins

belong to the cystatin superfamily of proteins (Dabrowska et al.,

2015; Olivier et al., 2000) and can transport fatty acids in the

bloodstream (Cayatte et al., 1990). Both fetuin A and B are stud-

ied in metabolic disorders such as obesity and diabetes; howev-

er, their expression is increased in these diseases rather than

decreased as observed in SaB. Notably, fetuin A has also been

shown to exert anti-inflammatory effects, and supplementation

is protective in mouse models of systemic inflammation (Cayatte

et al., 1990). One proposed mechanism of the protective effects

of fetuin A appears to be through enhancement of spermine-

mediate macrophage deactivation, potentially limiting immuno-

pathology. Future studies are needed to determine whether

similar mechanisms are at play in SaB as well as what role fetuin

B plays in this process. Regardless, both proteins present an

intriguing link between metabolism and bacteremia and can

now be classified as biomarkers of SaB mortality.

Another PTM finding was an increase in carbamylation of albu-

min and serum transferrin in mortality patients. Protein carbamy-

lation is a non-enzymatic PTM (Jaisson et al., 2018) that is related

to a number of pathologies, including chronic kidney disease

(Berg et al., 2013) and rheumatoid arthritis (Pruijn, 2015). In

fact, multiple studies have proposed carbamylation of albumin

as a prognostic factor for mortality in patients with kidney failure
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(Berg et al., 2013; Kalim et al., 2013). Kidney disease and SaB are

intimately related (Alobaidi et al., 2015; Nielsen et al., 2015), and

the common signature of carbamylation suggests an underlying

pathological process. Further, patients with rheumatoid arthritis,

which can also be linked to S. aureus infections (Joost et al.,

2017) and colonization (Goodman et al., 2019), are reported to

have more anti-carbamyl antibodies (Shi et al., 2014). Whether

this modification is pathological or simply a marker of disease

severity requires additional experiments; nevertheless, it ap-

pears linked with a variety of disease states.

The second computational advancement in serum bio-

analytics utilized in this study is the inferring of cytokine signa-

tures from serum proteomics data. This analysis predicted major

alterations in IL-6, TGF-b1, TNF, IL-1b, and IL-10 in mortality

samples, all of which were validated by an orthogonal approach

(i.e., IPA) and have exhibited associations to SaB human mortal-

ity in previous studies (Guimaraes et al., 2019; Minejima et al.,

2016; Rose et al., 2012, 2017). This approach also enables re-

searchers to link these major cytokine players to the observed

proteomic data, facilitating the construction of testable hypoth-

eses (such as the impact of adiponectin signaling in SaB).

Together, this method refined host response pathway analysis

and identified unreported potential players in SaB.

In addition to defining SaB mortality biomarkers, we sought to

gain a deeper understanding of the host response to SaB

through clustering and network-based analyses. Unexpectedly,

the most striking findings from this were not related to the im-

mune system but rather a dysfunction of metabolism. While

some of our findings have been previously described, such as

the suppression of serum lipoproteins and T4 during severe in-

fections, we also captured surprising signatures of metabolic

dysfunction, specifically linked to mortality. The most salient of

these was the apparent shift from ternary to binary IGF-IGFBP

complexes, resulting in lower circulating IGF levels, and the in-

crease of ACs and relatedmolecular species in SaBmortality pa-

tients. The ultimate functional outcome of these perturbations is

unclear; however, they may help uncover alternative therapeutic

avenues by which to stabilize patients while providing antimicro-

bial treatments.

Finally, we demonstrated that stimulation of both thyroid and

adiponectin signaling pathways can enhance mouse survival in

experimental SaB. Previous studies into thyroid signaling sug-

gest inhibition of macrophage migration inhibitory factor (Al-

Abed et al., 2011) or enhancement of intracellular bacterial killing

(Chen et al., 2012) are responsible for its protective effects. In

contrast, adiponectin is mainly studied for its role in insulin resis-

tance and diabetes (Achari and Jain, 2017). However, it also has

anti-inflammatory, cardio-protective, and vaso-protective ef-

fects (Achari and Jain, 2017), and adiponectin KO mice are

more susceptible to polymicrobial sepsis (Teoh et al., 2008). In

agreement, our data indicate a protective role for adiponectin

signaling in SaB infection. Importantly, both T4 (Tanguay et al.,

2019) and AdipoRon (Okada-Iwabu et al., 2013) are orally

bioavailable, and T4 is FDA approved. If T4 or AdipoRon could

offer protection in humans, they may be explored as adjunctive

approaches to antibiotics for treating SaB.

Overall, we aimed to set a high standard in the infectious dis-

ease biomarker field by providing an accurate, multi-omic model
(including PTMs) for predicting SaB mortality. Conducting future

studies to the same depth and rigor will likely uncover additional

clinically useful findings and lead to a deeper understanding of

mortality in infection. Ultimately, this study sets the groundwork

for a multi-marker-based tool for the rapid prediction of SaB pa-

tient mortality at the time of clinical presentation: the Rapid Index

of SaB Mortality Kinetics (RISK) test.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Lysyl Endopeptidase (LysC) Wako Labs 129-02541

Sequencing-grade Trypsin Promega Corporation V5113

Anhydrous Acetonitrile Sigma-Aldrich 271004

Tandem Mass Tags (TMT) Thermo Fisher 90110

50% Hydroxylamine Aldrich Chemistry 467804

C4 5 mm Stationary Phase Sepax 109045-0000

C18 3 mm Stationary Phase Sepax 101183-0000

C18 1.8 mm Stationary Phase Sepax 101181-0000

Critical Commercial Assays

Pierce Quantitative Colorimetric

Peptide Assay

Thermo Fisher 23275

Fetuin-B ELISA Kit RayBiotech ELH-FetuinB-1

IGFBP3 ELISA Kit RayBiotech ELH-IGFBP3-1

SERPIND1 ELISA Kit RayBiotech ELH-SERPIND1-1

Deposited Data

Standard Proteomics ProteomeXchange PXD018030

PTM Proteomics ProteomeXchange PXD018031

Metabolomics MassIVE MSV000083593

Experimental Models: Organisms/Strains

Mouse: 8-week old female CD1 Charles River CD1

Software and Algorithms

Proteome Discoverer (2.1) Thermo Fisher N/A

R Studio (1.1.463) R Studio N/A

Prism (7.0b) GraphPad N/A

Cytoscape (3.7.2) (Shannon et al., 2003) N/A

Ingenuity Pathway Analysis (01.16) QIAGEN N/A

Other

Sep-Pak Cartridge 1 cc Waters WAT054960

HPLC Column Thermo Fisher 720105-254630

Fused Silica Capillary Tubing Polymicro Technologies 106815-0023

Orbitrap Fusion Tribrid Mass Spectrometer Thermo Fisher IQLAAEGAAPFADBMBCX
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David J.

Gonzalez (djgonzalez@ucsd.edu).

Materials Availability
This study did not generate new unique reagents.
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Data and Code Availability
The proteomics data generated for this manuscript, including annotated spectra, have been deposited onto the ProteomeXchange

archive through MassIVE under the following identifiers: Standard Proteomics (ProteomeXchange: PXD018030), PTM-tolerant Pro-

teomics (ProteomeXchange: PXD018031). Metabolomics data and molecular network are available on MassIVE:MSV000083593. All

other data is available upon request.

The R scripts used for analysis in this manuscript are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Studies
Patient serum or plasma samples were obtained from patients at the UW Health as part of the Staphylococcus aureus bacteremia

immune response (SaBIR) study under Health Sciences Institutional Review Board (IRB) approved protocol # 2018-0098. UW Health

is a 505-bed tertiary care, academic medical center located inMadison, Wisconsin. Patients, both male and female sex, between the

ages of 18-89 years of agewere eligible to be included in the biobank study. Patient samples were collected as part of routinemedical

care, and therefore a waiver of informed consent was permitted for study inclusion. The collection of subject data is provided in the

Method Details section below.

Mouse Models
All animal experiments were performed in accordance with national institutes of health (NIH) guidelines and approved by the Insti-

tutional Animal Care and Use Committee (IACUC) of the University of California San Diego. Eight-week-old female CD1 mice

were used for all animal experiments. Mice were housed 5 to a cage and randomly assigned into experimental groups.

METHOD DETAILS

Patient and Isolate Identification and Collection
Patients were identified with SaB for study inclusion by electronic notification of blood cultures growingS. aureus, identified byMatrix

Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF, Bruker Scientific LLC, Billerica, MA, USA). Methicillin-resistance

was identified using GeneXpert� test (Cepheid, Sunnyvale, CA, USA). Patients were included if at least two positive blood cultures

were identified, or one positive culture was congruent with a clinical diagnosis of SaB from an Infectious Diseases Physician

Specialist. This study did not analyze consecutive samples from SaB patients, but rather outcomes of death (ie. hospitalized, mor-

tality [HM]; n = 76) and survival (ie. hospitalized survival [HS]; n = 99) were selected from the SaBIR biobank for multi-omic serum

analysis. The other subject groups included non-hospitalized, non-infected healthy volunteers (NN; n = 15), and hospitalized, non-

infected patients (HN; n = 10) at UW Health identified through the electronic medical record.

Patient serum samples were obtained on the same day of initial presentation of SaB, before antibiotic therapy initiation and often

within 1 hour of blood culture. The samples were stored at �80�C until analysis

Clinical Measurements and Outcomes
Patient electronicmedical records were reviewed to collect basic demographics. Metadata variables are self-explanatory or defined as

follows: CV - cardiovascular, BP - blood pressure, Dys - dysfunction,MAP -mean arterial pressure, SCr - serum creatinine,WBC -white

blood cell count. The mean age was 58.7 ± 15.5 years and 49.1%of patients weremale. In the SaB patient group, 33.2%were infected

with MRSA and 66.8% had MSSA bacteremia, identified as above and confirmed by routine antimicrobial susceptibility testing in the

clinical microbiology laboratory. Total duration of bacteremia included cases of persistent bacteremia (consecutive days of positive

bloodcultures) and in-hospitalmicrobiologic relapsedefinedas recurrenceof a positivebloodculture after the first negative culturewhile

receiving appropriate antibiotic. The median duration of bacteremia duration was 2 days with an interquartile range of 1-4 days. All

included patients received appropriate antimicrobial therapy for the treatment of MSSA (anti-staphylococcal b-lactam or vancomy-

cin/daptomycin where needed for b-lactam allergic patients) and MRSA bacteremia (vancomycin or daptomycin).

Serum Metabolite Extraction
All steps for this protocol are to be done on ice. Serum samples (100 ml) were thawed for 30 mins, then 400 mL of prechilled extraction

solvent (100%MeOH with 1 mM sulfamethazine as an internal standard) was added to each sample. Samples were mix using a vor-

texer for 2 minutes (min) then incubated at�20�C for 20 min to aid in protein precipitation. Samples were centrifuged the samples at

16,000 x g for 15 min to pellet the protein precipitate. The supernatant was transferred into 96-Well DeepWell, dried using centrifugal

low-pressure system and stored at �80�C once dry.

Metabolomic LC-MS2 Analysis
Metabolomic LC-MS2 was performed on a Bruker Daltonics� Maxis qTOF mass spectrometer (Bruker, Billerica, MA USA) with a

Thermo Scientific UltiMate 3000 Dionex UPLC (Fisher Scientific, Waltham, MA USA). Plates were organized so that each row started

with a blank and contained 1 - 2 controls, 4 - 7 HS samples and 3 - 5 HM samples in a random order. Metabolites were separated
Cell 182, 1311–1327.e1–e6, September 17, 2020 e2
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using a Phenomenex C18 core shell (50 3 2 mm, 1.7 mm particle size) UHPLC column fitted with a C18 guard cartridge. The mobile

phase solvents (solvent A, water-0.1% formic acid; solvent B, acetonitrile-0.1% formic acid) were run at a flow rate of 0.5 ml/min and

chromatographic separation was achieved using the following elution gradient: 0 to 1min 5%B, 1 to 10min a linear increase from 5 to

100%B, 10 to 12min held at 100%B, 12 to 12.5min a linear decrease from 100 to 5%B, and 12.5 to 13minmaintained at 5%B. The

mass spectrometer was calibrated twice daily using Tuning Mix ES-TOF (Agilent Technologies). For accurate mass measurements,

lock mass internal calibration used a wick saturated with hexakis (2,2-difluoroethoxy)phosphazine (Synquest Laboratories, m/z

622.0289) located within the source. Ions were generated using the following parameters: nebulizer gas pressure, 2 Bar; Capillary

voltage, 3,500 V; ion source temperature, 200�C; dry gas flow, 9 l/min; spectra rate acquisition, 3 spectra/s. Full scan MS spectra

(m/z 50 – 1500) were acquired in the qTOF and the top five most intense ions in a particular scan were fragmented using a ramped

collision induced dissociation (CID) energy from 10 - 50 eV. Data dependent automatic exclusion protocol was used so that an ion

was fragmented when it was first detected, then twice more, but not again unless its intensity was 2.5x the first fragmentation. This

exclusion method was cyclical, being restarted after every 30 s.

Metabolite Molecular Networking and Identification by GNPS
Metabolomics data fileswere converted to the .mzXML format using the Bruker Data Analysis software and uploaded toGNPS (Wang

et al., 2016) through the MassIVE server (MSV000083593). Molecular networking was optimized as previously described (Scheubert

et al., 2017) to an estimated false discovery rate of 1%. The data was filtered by removing all MS2 fragment ions within ± 17 Daltons

(Da) of the precursor m/z. MS2 spectra were window filtered by choosing only the top 6 fragment ions in the ± 50 Da window

throughout the spectrum. The precursor ion mass tolerance was set to 0.05 Da and an MS2 fragment ion tolerance of 0.05 Da. A

network was then created where edges were filtered to have a cosine score above 0.59 and more than 6 matched peaks. Spectra

were searched against the spectral libraries contained within GNPS. The library spectra were filtered in the samemanner as the input

data. All matches kept between network spectra and library spectra were required to have a score above 0.7 and at least 6 matched

peaks. In addition to the level 2 or 3 annotations based on the 2007metabolomics standards initiative (Sumner et al., 2007) generated

through molecular networking, CSI:FingerID (Dührkop et al., 2015) was used for molecular fingerprint identification through a frag-

mentation tree approach and subsequently spectra were annotated for chemical ontology through ClassyFire (Djoumbou Feunang

et al., 2016). It is important to note here that our list of 5000+ metabolites is somewhat inflated due to related features that may not

correspond to bone fide metabolite species; however, these occurrences are readily visible in the GNPS networks (https://gnps.

ucsd.edu/ProteoSAFe/static/gnps-splash.jsp - MSV000083593 - edges with high correlation and mass shifts of 0). A more stringent

estimation of total number molecular species (3310) can be derived from the total number of molecular networks (310) and non-net-

worked features (3000).

MS1 area under the curve feature abundances were used for quantification and to produce a metabolome bucket-table with the

mzMine software (Pluskal et al., 2010). MzMine modules were used with the following settings. Peak mass detection: 1E3 MS1 noise

level, 1E2 MS2 noise level. Chromatogram deconvolution: Local minimum search algorithm: 0.2 min minimum retention time (RT)

range, 3 min ratio of peak top/edge, 0.05 – 0.5 min peak duration range, 0.05 Da m/z range for MS2, and 0.2 min RT range for

MS2. Isotopic peak grouper: 0.05 m/z tolerance, 0.1 min RT tolerance, maximum charge 4. Join aligner: 0.01 m/z tolerance,

0.3 min RT tolerance, 75% weight for m/z, 25% weight for RT, 2 minimum peaks per row. Gap filling: 20% Intensity tolerance,

0.01 m/z tolerance, 0.2 min RT tolerance. Peak filter: Area 1E3 – 1E12. The abundances of each feature in the final bucket-table

were normalized first by abundance of the internal standard (1 uM sulfamethazine) within each sample and next by the total ion in-

tensity of each sample.

Serum Protein Digestion and Labeling
Protein Digestion

100 mL of serum proteins were denatured by addition of 100 mL 8 M urea, 50 mM HEPES. Proteins were reduced and alkylated with

dithiothreitol (DTT) and iodoacetamide (IAA), respectively (Haas et al., 2006), then methanol/chloroform precipitated. Proteins were

re-solubilized in 1Murea in 50mMHEPES and 25mMammoniumbicarbonate (pH 8.5) and digested in a two-step process (LysC and

Trypsin). Digested peptides were then desalted with C18 Sep-Paks (Tolonen and Haas, 2014).

TMT Labeling

Sampleswere labeledwith TMT10-plex reagents (McAlister et al., 2012; Thompsonet al., 2003) formultiplexedquantitativeproteomics.

TMT reagent channel 126 was reserved for bridge channels, and the remaining reagents were used to label pure sample digests. The

efficient combining of MS data from 22 separate 10-plex experiments largely depends on the proper partitioning of samples into

each 10-plex. Ideally, each 10-plex should be as similar as possible. Thus, we partitioned the samples in a way that ensured each 10-

plex contained 1-2 control samples, 3-4 hospitalized mortality (HM) samples and 4-5 hospitalized survival (HS) samples along with

the pooled bridge channel. In this way, every peptide detected in a single 10-plex will provide quantification for at least 3 samples

fromeachof our infected groups (ie. HMandHS), By increasing the number of samples a protein is detected in per condition, this exper-

imental design enables more robust statistical comparisons to be performed. Bridge channels consisted of an equal portion of each

digest pooled together and then re-aliquoted into 50 mg portions for labeling. The bridge served as a means to control for experimental

variation betweenmass spectrometry experiments. Labelingwas conducted for 1 hr at RT andwas quenched by addition of 9 mL of 5%

hydroxylamine.Sampleswere thenacidifiedbyadditionof50mLof1%TFA,pooledanddesaltedwithC18Sep-Paksasdescribedabove.
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Basic pH Reverse-phase Liquid Chromatography (bRPLC) Fractionation
Fractionation was carried out by bRPLC (Wang et al., 2011) with fraction combining as previously described (Lapek et al., 2017b;

Tolonen and Haas, 2014). Samples were solubilized in 110 mL of 5% formic acid in 5% acetonitrile and 100 mL was separated on

a 4.6 mm x 250 mm C18 column on an UltiMate 3000 HPLC. The resultant 96 fractions were combined into 24 distinct fractions

and dried prior to multiplexed LC-MS2/MS3 analysis. 10 of the concatenated fractions were analyzed for each 10plex based on pre-

liminary data indicating diminishing returns after analyzing 10 fractions.

Proteomic LC-MS2/MS3 Analysis
Peptideswere resuspended in 5%acetonitrile/5% formic acid and analyzed on anOrbitrap Fusion Tribridmass spectrometer with an

in-line Easy-nLC 1000 System. Samples were loaded onto a 30 cm in-house pulled and packed glass capillary column (I.D. 100 mm,

O.D. 350 mm). The column was packed with 0.5 cm of 5 mmC4 resin followed by 0.5 cm of 3 mmC18 resin, then 29 cm of 1.8 mmof C18

resin. Following sample loading, peptides were eluted using a gradient ranging from 11 – 30% acetonitrile in 0.125% formic acid over

85 min at a flow rate of 300 nl/min and heating the column to 60�C. Electrospray ionization was assisted by the application of 2,000 V

of electricity through a T-junction connecting the column to the nLC. All data acquired were centrioded.

MS1 spectra were acquired in data dependent mode with a scan range of 500-1200m/z and a resolution of 60,000. Automatic gain

control (AGC) was set to 2 3 105 with a maximum ion inject time was 100 miliseconds (ms) and a lower threshold for ion intensity of

53 104. Ions selected for MS2 analysis were isolated in the quadrupole at 0.5 Th. Ions were fragmented using CID with a normalized

collision energy of 30% and were detected in the linear ion trap with a rapid scan rate for low resolution spectra (eight 10-plexes;

standard proteomic analysis). For high-resolution spectra (fourteen 10-plexes; standard proteomic and PTM analysis), ions were

fragmented using higher-energy collision-induced dissociation (HCD) with a normalized collision energy of 30% and were detected

in the Orbitrap with a resolution of 33 104. Multiple studies have supported high-resolution scans to be beneficial for PTM analyses

(Chick et al., 2015; Devabhaktuni et al., 2019). Further, for glyco-peptide matching, the detection of low mass glycan reporter ions,

which are efficiently captured using the HCD fragmentation scheme(Cao et al., 2014;Mayampurath et al., 2011), is useful for selecting

glyco-peptide containing spectra prior to database searching. AGC was set to 1 3 104 and the inject time was set to 35 ms.

MS3 analysis was conducted using the synchronous precursor selection (SPS) option to maximize TMT quantitation sensitivity

(McAlister et al., 2014). Up to 10 MS2 ions were simultaneously isolated and fragmented with HCD using a normalized energy of

50%. MS3 fragment ions were analyzed in the Orbitrap at a resolution of 6 3 104. The AGC was set to 5 3 104 using a maximum

ion injection time of 150 ms. MS2 ions 40 m/z below and 15 m/z above the MS1 precursor ion were excluded from MS3 selection.

Peptide Identification by Proteome Discoverer
Standard Proteomics Workflow

Resultant data files were processed using Proteome Discoverer 2.1. MS2 data were queried against the Uniprot human database

(downloaded: 03/2019; 43,518 entries; contains isoforms and unreviewed entries, but fragments were removed) using the Sequest al-

gorithm (Eng et al., 1994). A decoy searchwas also conductedwith sequences in reversed order (Elias andGygi, 2007; Elias et al., 2005;

Peng et al., 2003). For MS1 spectra, a mass tolerance of 50 ppm was used and for MS2 spectra a 0.6 Da (for low-resolution spectra) or

0.05 Da (for high-resolution spectra) tolerance was used. Static modifications included TMT 10-plex reagents (+229.162932 Da) on

lysine and peptide n-termini and carbamidomethylation of cysteines (+57.02146 Da). Variable oxidation of methionine (+15.99492

Da) and deamidation of asparagine and glutamine (+0.984016 Da) were also included in the search parameters. Data were filtered

to a 1% peptide and protein level false discovery rate using the target-decoy strategy (Elias and Gygi, 2007; Elias et al., 2005; Peng

et al., 2003). The minimum number of peptides required to quantify a protein was one based on the logic that the estimation of protein

error rates are better evidence for protein presence than two peptides (Gupta and Pevzner, 2009). Following the initial analysis, the

search was repeated for a focused database (1,088 entries). For TMT experiments, reporter ion intensities were extracted from MS3

spectra for quantitative analysis. Protein-level quantitation values were calculated by summing signal to noise values for all peptides

per protein meeting the specified filters (high confidence, non-rejected spectra with an average signal:noise > 10 and isolation interfer-

ence< 25%). Datawere normalized in a two-stepprocess aspreviously described (Lapek et al., 2017a). First, the values for eachprotein

were normalized to the pooled bridge channel value. Then, the values were normalized to the median of each reporter ion channel.

PTM-tolerant Workflow

While using standard collisional induceddissociation (CID) and taking low-resolution scans in the ion trap (IT) is awidespreadMSstrat-

egy, PTM identification and localization is optimally derived from high-resolution mass spectra taken in the Orbitrap (OT) mass

analyzer (Chick et al., 2015; Devabhaktuni et al., 2019). Further, the use of glycan reporter ions to identify glycopeptide-containing

spectra requires higher-energy collisional dissociation (HCD) fragmentation (Cao et al., 2014; Mayampurath et al., 2011). Therefore,

we employed the use of an HCD-OTMS workflow for this PTM analysis. High resolution MS2 data from proteomic experiments were

submitted tomolecular networking viaGNPSas described above. Overrepresentedmass shifts, as determined by the total number of

network edges corresponding to eachmass shift, were selected asmodifications to include in a PTM-tolerant search. Mass shifts ul-

timately included in the search were selected based on the number of observed edges (> 100) and if the PTM identity (inferred from

unimod.org) had been previously detected in proteomic experiments. MS2 data were queried against a focused human serum prote-

omedatabase (proteins detected in standard search, 1,088 entries) usingByonic (Bern et al., 2012). A decoy searchwasalso conduct-

edwith sequences in reversed order (Elias andGygi, 2007; Elias et al., 2005; Penget al., 2003). ForMS1 spectra, amass toleranceof 50
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ppmwas used and for MS2 spectra a 0.05 Da tolerance was used. Static modifications included TMT 10-plex reagents (+229.162932

Da) on peptide n-termini and carbamidomethylation of cysteines (+57.02146 Da). Variable modifications were specified using Modi-

ficationFineControl. Variablemodifications included: deamidation (+0.984016Da) of asparagine andglutamine, oxidation (+15.99492

Da) of methionine, tryptophan and histidine, formylation (+27.994915 Da) of lysine, dioxidation (+31.989829 Da) of tryptophan, carba-

mylation (+43.005814) of lysine and arginine and dihydroxyimidazolidine (+72.021129 Da) of arginine. Spectra that contained low-

mass glycan reporter ions asdeterminedby the IMP-glycan reporter nodewere submitted to aglyco-peptide searchwith the following

modification parameters. Staticmodifications included: TMT10-plex reagents (+229.162932Da) on peptide n-termini and lysines and

carbamidomethylation of cysteines (+57.02146 Da). Variable modifications included: oxidation (+15.99492 Da) of methionine and

glycosylation (57 common human N-glycans (Bern et al., 2012; Clerc et al., 2016) - various Da) of asparagine. Glycan structures

were inferred from the monosaccharide compositions in accordance with common serum glycans. Reporter ion intensities for modi-

fied peptides were summed to the unique peptide level then normalized as above. PTMswere localized in the context of the total pro-

tein length and flanking sequences were extracted using the PTMphinder R package (Wozniak and Gonzalez, 2019).

Statistical Analyses of MS Data
Binary Comparisons

First, binary comparisons were used to identify biomarkers for the prediction of SaB mortality. Two types of binary analyses were

used, Mann-Whitney U (MWU) tests, which has been shown to be effective for biomarker selection (Dakna et al., 2010), and an

ensemble feature selection (EFS) approach, which can reduce biases of any individual feature selection method (He and Yu,

2010). MWU tests were implemented in Excel using the RealStats package and EFS was implemented in R using the EFS package

(Neumann et al., 2017). The EFS approach combines MWU tests, logistic regression, Pearson and Spearman correlations and two

random forest algorithm implementations, cforest and randomForest, into a single, rank-able score. Biomarkers were ultimately

ranked by the average score from both binary comparison analyses (Tables S2 and S3).

Metadata Assessment

An R script was written to determine the association of quantified features with patient metadata. First, the metadata was split into two

groups, categorical metadata and continuous metadata. Categorical metadata associations were determined using MWU test (2 cate-

gories) or Kruskall-Wallis test (> 2 categories). Continuous metadata associations were determined using Pearson correlation. All tests

wereperformedusingbaseR functions.Metadataassociationsdisplayed infigures represent the -log10(pvalue) reported fromeach test.

K-means Clustering

In addition to ranking biomarkers using binary comparisons, we performed multi-class analyses to consider the control groups (NN

and HN) in addition to the infected samples (HS and HM). First, we employed K-means clustering to group proteins with similar

expression profiles across our four major patient groups (NN, HN, HS, HM). Prior to clustering, proteins were filtered for significant

differences using uncorrected, ANOVA p< 0.05. The optimal number of clusters was determined using the elbowmethod. Benjamini-

Hochberg corrected p values are also provided (Tables S2 andS3), but all featureswith uncorrected ANOVAp< 0.05were included in

figures and downstream analyses (ie. gene ontology/network analyses) because these tools work best with protein lists larger than 50

(Huang et al., 2009; Mi et al., 2013).

LASSO Regression

Second, we employed a LASSO regression algorithm to select the minimum set features required to classify the four sample groups.

The initial feature space displayed significant missingness (average missingness was 48.55% for proteomics and 40.70% for all me-

tabolomics) and thus missing values were imputed prior to regression analyses. Before imputation, features having > 50%missing-

ness were conservatively dropped for not having enough information to confidently infer new values, leaving 504 proteomic and 3082

metabolomic features in total. Fast missing value imputation was implemented by chained random forests within each individual da-

taset using the missRanger R package (https://github.com/mayer79/missRanger). Briefly, each missing value was imputed by a

random forest built on all other features as co-features; this process is iterative, such that it continues multiple times across all fea-

tures until the average out-of-bag (OOB) prediction error plateaus. It leads to imputations with realistic variability, similar to stochastic

regression imputation, but is much faster and computationally efficient across thousands of features.

After fast imputation by chained random forests on each dataset, they were separately scaled to Z-scores and concatenated for

regularized (L1 norm) machine learning approaches. Subsequent regularized machine learning was done using the caret (http://

topepo.github.io/caret/index.html) and glmnet (Friedman et al., 2010) R packages to train, test, and evaluate LASSO logistic classi-

fication models. The mathematical details of LASSO are comprehensively described elsewhere (Friedman et al., 2010). The basic

idea is that models are penalized for both overall predictive performance and the size of the resultant feature set used to make those

predictions. Due to small cohort sizes in NN and HN groups (n = 13 and n = 10, respectively), 10-fold cross-validation was used to

estimate group discriminative performance rather than traditional train-test splits. Using the LASSO parameterization (alpha = 1),

models were tuned on a search grid of lambda values: 0.001 to 0.3 by steps of 0.01. Models were optimized for the highest area under

the ROC curve (AUROC), which for multiclass comparisons was calculated as the average AUROC across all applicable one-class-

versus-all-others comparisons. Feature importance and the overall LASSO proteomic-metabolomic signature (length = 98 features:

32 proteomic, 68 metabolomic) was obtained using the varImp() in caret and keeping any features with non-zero importance values.

Overall model performance and its confusionmatrix was determined by examining the predictions on samples left out during their kth

fold and their ground truth using the caret and MLmetrics (https://github.com/yanyachen/MLmetrics) packages.
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Multi-omic data integration

Finally, for multi-omic data integration, we implemented the mixOmic data analytics pipeline (Rohart et al., 2017). This method ex-

tends the Generalized Canonical Correlation Analysis (Tenenhaus et al., 2017) framework with a generalized, supervised partial

least-squares (PLS) approach to integrate multiple data types across the same group of subjects with known phenotypes while iden-

tifying key omics variables in the process. The mathematical details are described in the associated paper (Rohart et al., 2017).

Imputed proteomic and metabolomic data, as described above, were utilized for this analysis with a labeled class vector composed

of their sample group (NN: n = 13, HN: n = 10, HS: n = 99, HM: n = 76; n = 198 total). The designmatrix was built with link weights of 0.1

between the proteomic and metabolomic data (as seen: http://mixomics.org/mixdiablo/case-study-tcga/). The model was then first

fit using 10-fold cross-validation, repeated 10 times in order to determine the optimal number of components for the final model (that

is, the number of components that leads to the lowest classification error rate). The optimal number of components was determined

to be 4. The final model was subsequently used for plot generation.

Gene Ontology (GO) and Network-based Analyses
Proteins subsets identified through various computational approaches were subjected to GO and network-based analyses using the

Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al., 2007, 2009) and STRING-db (Szklarczyk et al.,

2019) tools, respectively. For GO analysis, lists of interesting proteins were submitted for enrichment analysis using all the proteins

detected in the experiment as a background dataset. All GO terms displayed in the figures had a p < 0.05. For network-based an-

alyses, protein lists were submitted to the STRING-db tool (all active interaction sources, interaction score > 0.8). The network was

exported into a simple tabular output, reformatted to display desired parameters (e.g., K-means clusters), then imported into Cyto-

scape (Shannon et al., 2003) for visualization.

Network-based Cytokine Inference

Knowledge-based networks were used to infer the relative contributions of major cytokines on the observed proteomic alterations.

First, a list of cytokines was manually curated (TGFb, TNF, IFN, IL1-40, CXCL1-16, CCL1-27) and submitted with the significantly

altered proteins (uncorrected ANOVA p < 0.05) to the STRING-db tool (all active interaction sources, interaction score > 0.4). The

network was exported into a simple tabular output and cytokines were profiled for their enrichment in mortality clusters (pMortality+,

pMortality� and pMortality�) using the following approach. First, cytokines were filtered to have at least five connections to mortality

networks. Then, the proportion of each cytokine within the mortality clusters (ie. number of cytokine-mortality cluster connections

relative to the total connections within mortality clusters) was compared to the proportion of each cytokine in the entire dataset

(ie. number of cytokine-protein connections relative to total connections within the entire dataset). Significancewas determined using

Chi-square tests and a fold-change was calculated by dividing the proportion of cytokine-mortality connections by the proportion of

cytokine connections within the total dataset. A final enrichment score was calculated by multiplying the -log10(p value) from the Chi-

square test by the log2(fold-change of enrichment). By including the total number of connections that each cytokine had in the entire

dataset as a background, any enrichment bias due to higher annotation rates for popular cytokines in STRING-db is controlled for.

To benchmark the cytokine inference approach mentioned above, we compared the results to Ingenuity Pathway Analysis (IPA –

QIAGEN). IPA receives a list of proteins and calculates upstream regulator enrichment based on the overlap of target proteins in the

submitted list and reports a p value for significance. For all cytokines reported by both tools, the -log10(p value) from IPA was

compared to the enrichment score from the cytokine inference approach using Pearson correlation. Additional, highly significant up-

stream regulators (p < 0.001) of non-cytokine origin were manually curated from the IPA results for inclusion in the manuscript.

Mouse Model of SaB
8-week old female CD1 mice were used for all animal experiments. Mice were treated before infections as follows or with vehicle

controls. Hyperthyroid mice were given I.P. injections of 100 mg thyroxine (T4) once daily for the three days prior to infection. Hypo-

thyroid mice were given drinking water containing hypothyroid treatment (1% (wt/vol) sodium perchlorate and 0.1% (wt/vol) methi-

mazole) for three weeks prior to infections. Adiponectin mice were given I.P. injections of 1 mg/kg AdipoRon one day prior infection,

then injected daily with AdipoRon for the duration of the experiment. Mice were then I.V. infected with S. aureus LAC (high dose (Fig-

ure 7B): 1x108 CFUs, low dose (Figures 7C–7H): 5x107 CFUs) and survival was monitored every 12 hours. For CFU burden experi-

ments, mice were treated and infected as above, then euthanized 48 hours post-infection and organs were harvested for quantitation

of bacterial burden.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were completed as described in the corresponding figure legends. Either GraphPad Prism, Microsoft Excel or R

were used to conduct tests. Sample sizes for the validation cohort were determined based on a power calculation using example data

from the preliminary cohort (a < 0.001; 1 - b = 0.95; nR 45) and a review of the literature (nR 50)(Skates et al., 2013). Significancewas

assessed using one or more of the following: Mann-Whitney U test, analysis of variance (ANOVA), Pearson correlation test, ROC

curves, or logistic regression. For ANOVA, Tukey’s multiple comparisons test was used. For all tests, significance values are denoted

as follows: ****p < 0.0001; ***p < 0.001, **p < 0.01; *p < 0.05, ns - not significant.
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Supplemental Figures

Figure S1. Additional Biomarkers Analysis and Validation of Top Markers, Related to Figure 2

Correlation of Mann-Whitney U (MWU) test and ensemble feature selection (EFS) rankings for (A) proteins and (B) metabolites. (C) Abundance and ROC curve of

SERPIND1 (survival versus mortality). (D) Abundance and ROC curve of CNDP1 (survival versus mortality). (E) Abundance and ROC curve of Fetuin B (survival

versusmortality - preliminary cohort). (F) Abundance and ROC curve of CSTB (survival versus mortality). (G) Abundance and ROC curve of SFTPB (survival versus

mortality). (H) Abundance and ROC curve of HEPC (survival versus mortality). (I) Abundance and ROC curve of S1P (survival versus mortality). (J) Abundance and

ROC curve of T4 (survival versus mortality). (K) Abundance and ROC curve of decanoyl-carnitine (survival versus mortality). (L) Abundance of IGFBP3 measured

via ELISA. (M) Abundance of SERPIND1 measured via ELISA. Error bars represent interquartile range (IQR). For all tests, significance values are denoted as

follows: ****p < 0.0001; ***p < 0.001, **p < 0.01; *p < 0.05, ns - not significant. For C, D, F, G, H, and I, significance is displayed based on Kruskal-Wallis tests with

Dunn’s multiple comparison test. For E, J and K, significance is displayed based on Mann Whitney U tests.
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Figure S2. Metadata Associations of Top Biomarkers, Related to Figure 2

Metadata assessments of top biomarkers including: decreased proteins (A) - SERPIND1, (B) - CNDP1, (C) - PLG), increased proteins (D - IGFBP2, (E) - ADIPOQ,

(F) - EFEMP1), decreased metabolites (G) - X349, (H) - X228, (I) - X320) and increased metabolites (J) - X746, (K) - X854, (L) - X2532). Plots are highlighted red for

increased expression in mortality or blue for decreased expression in mortality.
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Figure S3. Comparison of Low- and High-Resolution Mass Spectrometer Methods, Related to Figure 3

(A) Number of PSMs detected across each 10plex experiment. (B) Venn diagram of peptides identified by eachmethod for experiment 8 (E8). (C) Venn diagram of

proteins identified by each method for E8. (D) Correlations of PSMs assigned to each protein by each method for E8. (E) Correlations of TMT-based quantitation

for every protein in each sample by each method in E8.

ll
Resource



Figure S4. Extended PTM-Tolerant Search Analysis, Related to Figure 3

(A) Proportion of detected glyco-sites present in Uniprot. (B) MS1 mass errors for standard and PTM-tolerant database searches. Correlations of total PSMs (C)

and unique peptides (D) per protein detected in the standard and PTM-tolerant database searches. (E) Unique peptides detected in the standard and PTM-

tolerant database search ranked by number of unique unmodified peptides then number of unique modified peptides. Pie charts depict unique peptide pro-

portions of top and bottom 50%of proteins detected in the standard and PTM-tolerant workflows. (F) GO analysis of proteins with bottom 50%of unique peptides

in the standard search. (G) Proteins with the largest gain in unique peptides detected in the PTM-tolerant search. (H) Abundance of modified ILK peptides

detected in PTM-tolerant search. (I) Abundance of dioxidation of SPSB4 104W detected in PTM-tolerant search. (J) Metadata assessment of top modified

biomarkers for infection andmortality. (K) Correlation of modified peptide (Mod) and total protein relative abundances. Scatterplot of fold-changes comparing (L)

control versus infected and (M) survival versus mortality. (N) K means clustered heatmap of all significantly altered, protein-normalized, modified peptides (-

ANOVA p < 0.05) across the four primary groups (Control groups: NN – Non-hospital, Non-infected, HN – Hospital, Non-infected; Infection groups: HS –Hospital,

Survival, HM – Hospital, Mortality). (O) Serotransferrin mortality-associated PTM plot depicting modified peptide abundance (left) and modified peptide abun-

dance normalized to total protein levels (right).
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Figure S5. Extended Analysis of SaB Disease Modules, Related to Figure 4

Individual plots for major acute-phase reactant proteins contained within proteomics infection-associated cluster 2 from Figure 4A including: (A) CRP, (B) SAA1,

(C) SAA2, (D) ORM1, and (E) ORM2. (F-H) GO analysis of proteomics mortality-associated clusters: pMortality� (F), pMortality+ (G) and pMortality� (H). (I) Pie

chart for sources of molecular information for all metabolomic features detected in this experiment. (J) Key for source of molecular identity used in all molecular

networks in figure (S. L. - Spectral library, C.F. - ClassyFire). Molecular networks that are associatedwithmortality and contain identified nodes including: (K) acyl-

carnitines, (L) bilirubin, and (M) biliverdin. (N) Mortality-associatedmolecular network that did not containing any identified nodes. Nodes are colored according to

cluster designations in Figure 4D and sized according to -log10(p-value) determined via ANOVA. Mass shifts in networks are displayed in plots to the lower right of

each network (Da - Daltons). High-occurring mass shifts are highlighted in the networks as black edges and annotated in plots. Error bars represent interquartile

range (IQR). For all tests, significance values are denoted as follows: ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, not significant. For A - E, significance is

displayed based on ANOVA with Tukey’s multiple comparison test.
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Figure S6. Data Integration and Multi-Group Classification, Related to Figure 4

(A) Heatmap of multi-omic, multi-group classification model final features (blue - low expression, red - high expression). Bar charts displaying number of features

important for each group colored according their K-means cluster membership for (B) proteomics data and (C) metabolomics data. (D) Circos plot of correlations

(legend continued on next page)
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across proteomic andmetabolomic datasets. (E) Correlation network of proteins andmetabolites overlaid with K-means cluster information (Focus #1: mortality-

associated; Focus #2: hospital-associated). Node borders are colored according to K-means clusters defined for proteins (Figure 4A) and metabolites (Fig-

ure 4D). GO analysis of proteins in Focus #1 is displayed as a bar chart in the lower left region of the network. Metabolites belonging to the unknown, mortality-

associated network (Figure S5N - Subnetwork 16) are noted.
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Figure S7. Extended Knowledge-Based Analysis of Cytokines, Related to Figure 6

(A) Ingenuity Pathway Analysis (IPA) terms enriched in mortality proteomics clusters ordered by category then by -log10(p-value of overlap). (B) Comparison of

cytokines preferentially enriched in IPA or Cytokine Inferencemethod. Venn diagrams of target proteins of the commonly predicted pro-inflammatory (C) and anti-

inflammatory (D) cytokines determined by IPA and STRING-db. (E) First-pass analysis with all input cytokines and all proteins significantly altered (ANOVA p <

0.05) in the standard proteomics data. Proteomics nodes are colored according to designations in Figure 4A. Refined networks of top 5 commonly predicted

cytokines and pMortality� (F) and pMortality�(G) data. Proteomics node outlines are colored based their connections to pro-inflammatory cytokines (red), anti-

inflammatory cytokines (blue) or both (purple). Cytokine node outlines and neighboring edges are colored based on pro-inflammatory (red) or anti-inflammatory

(blue) activity. In all networks, proteomics nodes are sized according to -log10(p-value) determined via ANOVA.
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