CHEMBIOCHEM

Supporting Information

Salinipyrone and Pacificanone Are Biosynthetic Byproducts of the Rosamicin Polyketide Synthase

Takayoshi Awakawa,^[a, b] Max Crüsemann,^[a] Jason Munguia,^[c] Nadine Ziemert,^[a] Victor Nizet,^[c, d] William Fenical,^[a] and Bradley S. Moore^{*[a, d]}

cbic_201500177_sm_miscellaneous_information.pdf

Figure S1 The evaluation of $\triangle spr$ and spr10Y1290F strains. A) PCR amplification by using gDNA from *S. pacifica* CNS-237 and $\triangle spr$ strain. B) Se- quence result of the 595-bp fragment amplified from spr10Y1290F strain. The red frame shows the mutated sequence in this study.

Figure S2 HPLC analyses of the metabolites from i) CNS-237, ii) *spr10*Y1290F, and iii) Δspr cultured in A1FeBC medium. The traces represent chromatograms acquired by detection at 280 nm.

Figure S3 (A) Extracted chromatograms (345.240 m/z) of the metabolites from i) CNS-237 and ii) *spr10*Y1290F cultured in A1+BFe medium (** and *** indicate the compounds whose MSes are identical to **2**). (B) MS spectra of ** and ***.

Figure S4 LC-MS analyses of the metabolites from i) CNS-237 and ii) *spr10*Y1290F cultured in A1+BFe medium. The traces represent extracted chromatograms (431.242 m/z).

Figure S5 UV spectra of compound 1, 3-9, and *.

Figure S7¹H NMR spectrum of 3 in CDCl₃

Figure S9 HSQC spectrum of 3 in CDCl₃

Figure S10 HMBC spectrum of 3 in CDCl₃

Figure S11 ¹H NMR spectrum of 4 in CD₃OD

Figure S13 HSQC spectrum of 4 in CD₃OD

Figure S14 HMBC spectrum of 4 in CD₃OD

Figure S15 ¹H NMR spectrum of 5 in CDCl₃

Figure S19 ¹H NMR spectrum of 6 in CDCl₃

Figure S20¹H-¹H COSY spectrum of 6 in CDCl₃

Figure S26 HMBC spectrum of 7 in CDCl₃

Figure S27¹H NMR spectrum of 8 in CDCl₃

Figure S28 ¹H-¹H COSY spectrum of 8 in CDCl₃

Figure S29 HSQC spectrum of 8 in CDCl₃

Figure S32 ¹H-¹H COSY spectrum of 9 in CDCl₃

Figure S35 Alignment of SprKR6 (KR in the module 7) with known ketoreductase domains. The red frame shows the catalytic tyrosine residue.

Gene	Size	Predicted function	Closest homologue	Accession Number
	(a.a.)		(% Protein identity)	
Spr1	210	α/β hydrolase	-	H303DRAFT_03279
Spr2	211	Thioesterase		H303DRAFT_0328
Spr3	550	ABC transporter		H303DRAFT_0328
Spr4	372	Aminotransferase		H303DRAFT_03282
		DesV		
Spr5	405	P-450 RosC		H303DRAFT_03283
Spr6	403	P-450 RosD		H303DRAFT_03284
Spr7	4428	PKS	Micromonospora carbonacea (74)	AX697987
		(KSq-AT-ACP-KS-AT-KR-		
		ACP-KS-AT-DH-KR-ACP)		
Spr8	1889	PKS	Micromonospora carbonacea (74)	AX697989
		(KS-AT-DH-KR-ACP)		
Spr9	3719	PKS	Micromonospora carbonacea (77)	AX697991
		(KS-AT-KR-ACP-KS-AT-		
		DH-ER-KR-ACP)		
Spr10	1574	PKS (KS-AT-KR-ACP)	Micromonospora carbonacea (80)	AX697993
Spr11	1796	PKS (KS-AT-KR-ACP-TE)	Micromonospora carbonacea (77)	AX697995
Spr12	423	P-450 DesVIII		H303DRAFT_0408
Spr13	440	Glycosyltransferase		H303DRAFT_04084
		DesVII		
Spr14	238	Methyltransferase		H303DRAFT_04083
		DesVI		
Spr15	67	Hypothetical protein		H303DRAFT_04082
Spr16	671	Transcriptional		H303DRAFT_0408
		regulator		
Spr17	404	Transposase		H303DRAFT_0408
Spr18	482	GTP binding		H303DRAFT_04079
Spr19	381	Aminotransferase DesII		H303DRAFT 0407

Table S1 Gene organization of spr cluster

Spr20	480	Fe-S oxidoreductase	H303DRAFT_04077
		DesI	
Spr21	277	Dimethyladenosine transferase	H303DRAFT_04076
Spr22	329	Dehydratase Des IV	H303DRAFT_04075
Spr23	294	Pyrophosphorylase DesIII	H303DRAFT_04074

No.	δ_{H}
6	6.37 (d, 1H, J = 15.6)
7	7.09 (d, 1H, <i>J</i> = 15.6)
9	5.81 (d, 1H, <i>J</i> = 9.6)
10	2.69 (m, 1H)
11	3.40 (ddd, 1H, <i>J</i> = 4.2, 4.2, 8.4)
12	1.39 (m, 1H), 1.49 (m, 1H)
13	0.96 (t, 3H, J = 7.2)
14	1.95 (s, 3H)
15	2.06 (s, 3H)
16	1.88 (s, 3H)
17	1.05 (d, 3H, $J = 8.4$)

Table S2¹H-NMR data for **1** in CD₃OD (δ in ppm, J in Hz)^a

^a **1** was identified as salinipyrone A by comparing its ¹H chemical shift values and optical rotation values with the data reported in Oh, D.; Gontang, E. A.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. *J. Nat. Prod.* **2008**, *71*, 570.

No.	δ_H	δ_C	No.	δ_H	δ_C
1	-	173.5	16	1.05 (d, 3H, J = 6.0)	8.9
2	2.08 (d, 1H, <i>J</i> = 16.8),	30.3			
2	2.60 (m, 1H)	57.5	17	2.41 (1H, m), 2.82 (1H, m)	43.7
3	3.84 (br d, <i>J</i> = 10.8, 1H)	66.8	18	9.67 (1H, s)	202.6
4	1.75 (m, 1H)	40.3	19	1.16 (d, 3H, J = 6.6)	17.3
5	3.70 (br d, J = 9.0, 1H)	81.6	20	1.43 (s, 3H)	14.8
6	1.97 (br d, <i>J</i> = 11.4, 1H)	31.0	21	1.12 (d, 3H, J = 6.6)	14.5
7	1.45 (m, 2H)	31.1	22	1.50 (m, 1H), 1.75 (m, 1H)	24.4
8	2.54 (m, 1H)	45.2	23	0.87 (t, 3H, J = 7.2)	8.9
9	-	200.7	1'	4.29 (d, 1H, J = 6.6)	103.1
10	6.44 (d, 1H, J = 15.6)	122.9	2'	3.48 (m, 1H)	69.1
11	6.53 (d, 1H, J = 15.6)	151.1	3'	3.29 (m, 1H)	66.2
12	-	59.7	4'	1.42 (m, 2H)	30.8
13	2.79 (m, 1H)	67.5	5'	3.53 (m, 1H)	67.9
14	1.67 (m, 1H)	37.5	6'	1.24 (d, 3H, J = 6.6)	20.5
15	4.86 (m, 1H)	76.9	7', 8'	2.83 (s, 6H)	41.0

Table S3 ¹H- and ¹³C-NMR data for **3** in CDCl₃ (δ in ppm, J in Hz)^a

^a **3** was identified as rosamicin A by comparing its ¹H and ¹³C chemical shift values and optical rotation values with the data reported in Nakajima, S., Kojiri, K., Morishima, H., and Okanishi, M. *J. Antibiot.* **1990**, *43*, 1006; and US patent 4,161,523, 1979.

No.	δ_{H}	δ_C
1	-	166.2
2	-	98.8
3	-	166.0
4	-	108.7
5	-	152.3
6	6.49 (d, 1H, <i>J</i> = 15.6)	115.2
7	7.09 (d, 1H, <i>J</i> = 15.6)	138.3
8	-	135.3
9	5.71 (d, 1H, <i>J</i> = 10.2)	136.4
10	3.71 (m, 1H)	46.2
11	-	212.2
12	2.54 (m, 2H)	33.6
13	1.01 (t, 3H, $J = 7.2$)	6.5
14	1.96 (s, 3H)	7.6
15	2.07 (s, 3H)	8.0
16	1.97 (s, 3H)	11.1
17	1.18 (d, 3H, <i>J</i> = 7.2)	15.2

Table S4 ¹H- and ¹³C-NMR data for **4** in CD₃OD (δ in ppm, *J* in Hz)

No.	δ_{H}	δ_C	No.	δ_{H}	δ_C
1	-	174	16	1.05 (br s, 3H)	9.3
2	2.60 (m, 2H)	39.5	17	1.45 (m, 2H)	31.1
3	3.79 (m, 1H)	67.0	18	3.61 (m, 1H), 3.70 (m, 1H)	60.7
4	1.72 (m, 1H)	44.7	19	1.16 (d, 3H, J = 6.6)	17.4
5	3.74 (m, 1H)	81.4	20	1.44 (s, 3H)	15.0
			21	3.89 (dd, 1H, J = 3.0,	(15
6	1.44 (m, 1H)	31.1	21	10.8), 3.84 (m, 1H)	61.5
7	1.63 (m, 2H)	28.9	22	1.60 (m, 1H), 1.88 (m, 1H)	24.9
8	2.71 (m, 1H)	45.0	23	0.89 (t, 3H, J = 7.2)	9.2
9	-	201.3	1'	4.38 (d, 1H, J = 7.2)	103.3
10	6.46 (d, 1H, J = 15.6)	123.6	2'	3.49 (m, 1H)	69.5
11	6.55 (d, 1H, <i>J</i> = 15.6)	150.6	3'	3.32 (m, 1H)	66.5
12	-	59.2	4'	1.45 (m, 1H), 1.99 (m, 1H)	31.2
13	3.15 (d, 1H, <i>J</i> = 9.6)	64.8	5'	3.62 (m, 1H)	68.0
14	1.75 (m, 1H)	20.6	6'	1.27 (d, 3H, J = 6.0)	20.6
15	5.23 (m, 1H)	73.8	7', 8'	2.84 (s, 6H)	39.8

Table S5¹H- and ¹³C-NMR data for **5** in CDCl₃ (δ in ppm, *J* in Hz)

No.	δ_{H}	δ_{C}	No.	δ_{H}	δ_C
1	-	174.2	16	1.08 (br s, 3H)	9.4
2	2.61 (m, 2H)	39.2	17	1.48 (m, 2H)	31.3
3	3.83 (m, 1H)	67.1	18	3.62 (m, 1H), 3.69 (m, 1H)	60.8
4	1.75 (m, 1H)	40.5	19	1.16 (d, 3H, J = 6.6)	17.5
5	3.74 (m, 1H)	81.6	20	1.71 (s, 3H)	14.2
6	1.47 (m, 1H)	32.8	21	1.42 (s, 3H)	25.9
7	1.71 (m, 2H)	32.8	22	1.82 (m, 2H)	20.5
8	2.68 (m, 1H)	45.2	23	0.89 (t, 3H, J = 7.2)	10.3
9	-	201.1	1'	4.37 (d, 1H, J = 6.6)	103.3
10	6.47 (brs, 1H)	123.7	2'	3.50 (dd, 1H, <i>J</i> = 7.8, 9.6)	69.6
11	6.47 (brs, 1H)	150.6	3'	3.28 (m, 1H)	66.7
12	-	60.9	4'	1.46 (m, 1H), 2.03 (m, 1H)	31.4
13	2.80 (s, 1H)	68.8	5'	3.60 (m, 1H)	68.0
14	-	74.3	6'	1.27 (d, 3H, J = 6.0)	20.7
15	5.01 (m, 1H)	78.3	7', 8'	2.85 (s, 6H)	39.8

Table S6¹H- and ¹³C-NMR data for **6** in CDCl₃ (δ in ppm, J in Hz)

No.	δ_{H}	δ_{C}	No.	δ_{H}	δ_C
1	-	173.2	16	1.06 (d, 3H, J = 7.2)	9.1
2	2.64 (m, 2H)	39.5	17	2.32 (m, 1H), 2.91 (m, 1H)	43.9
3	3.84 (m, 1H)	61.5	18	9.67 (s, 1H)	202.7
4	1.74 (m, 1H)	44.8	19	1.17 (d, 3H, J = 7.2)	17.4
5	3.71 (m, 1H)	81.9	20	1.45 (s, 3H)	15.0
			01	3.89 (m, 1H), 3.90 (dd, 1H,	(1.(
6	1.46 (m, 1H)	31.3	21	<i>J</i> = 3.0, 10.8)	01.0
7	1.69 (m, 2H)	31.8	22	1.56 (m, 1H), 1.84 (m, 1H)	24.9
8	2.56 (m, 1H)	45.2	23	0.90 (t, 3H, <i>J</i> = 7.2)	9.1
9	-	200.7	1'	4.30 (d, 1H, J = 7.2)	103.6
10	6.46 (d, 1H, <i>J</i> = 15.6)	123.5	2'	3.48 (m, 1H)	69.3
11	6.55 (d, 1H, <i>J</i> = 15.6)	151.8	3'	3.24 (m, 1H)	66.8
12	-	59.0	4'	1.43 (m, 1H), 1.99 (m, 1H)	31.3
13	3.14 (m, 1H)	64.8	5'	3.54 (m, 1H)	68.0
14	1.75 (m, 1H)	20.3	6'	1.25 (d, 3H, J = 5.4)	20.7
15	5.24 (m, 1H)	73.7	7', 8'	2.83 (s, 6H)	39.0

Table S7¹H- and ¹³C-NMR data for **7** in CDCl₃ (δ in ppm, *J* in Hz)

No.	δ_{H}	δ_C	No.	δ_{H}	δ_C
1	-	173.9	16	1.07 (d, 3H, J = 6.6)	9.2
2	2.64 (d, 2H, <i>J</i> = 10.2)	39.4	17	2.45 (m, 1H), 2.91 (m, 1H)	43.8
3	3.88 (m, 1H)	67.0	18	9.67 (s, 1H)	202.7
4	1.77 (m, 1H)	40.6	19	1.16 (d, 3H, J = 7.2)	17.5
5	3.70 (m, 1H)	81.8	20	1.71 (s, 3H)	14.1
6	1.45 (m, 1H)	31.4	21	1.42 (s, 3H)	25.9
7	1.78 (m, 2H)	31.9	22	1.82 (m, 2H)	20.7
8	2.63 (m, 1H)	45.4	23	0.90 (t, 3H, J = 7.2)	10.2
9	-	200.5	1'	4.29 (d, 1H, <i>J</i> = 7.2)	103.3
10	6.49 (d, 1H, <i>J</i> = 15.6)	123.4	2'	3.49 (m, 1H)	69.3
11	6.51 (d, 1H, <i>J</i> = 15.6)	151.0	3'	3.26 (m, 1H)	66.6
12	-	61.0	4'	1.46 (m, 1H), 2.01 (m, 1H)	31.2
13	2.91 (s, 1H)	68.7	5'	3.54 (m, 1H)	67.9
14	-	74.3	6'	1.25 (d, 3H, J = 6.0)	20.7
15	5.01 (dd, 1H, <i>J</i> = 2.4, 10.8)	78.3	7', 8'	2.83 (s, 6H)	39.3

Table S8¹H- and ¹³C-NMR data for **8** in CDCl₃ (δ in ppm, J in Hz)

No.	δ_{H}	δ_{C}	No.	δ_{H}	δ_{C}
1	-	172.8	16	1.02 (d, 3H, J = 6.6)	7.8
2	2.20 (dd, 1H, J = 3.0, 15.9), 2.47 (m, 1H)	39.4	17	1.46 (m, 1H), 1.62 (m, 1H)	21.5
3	4.25 (m, 1H)	67.7	18	0.77 (t, 3H, J = 6.6)	11.8
4	2.45 (m, 1H)	47.5	19	1.19 (d, 3H, J = 6.6)	17.1
5	-	213.5	20	1.84 (s, 3H)	12.9
6	2.42 (m, 1H)	48.7	21	3.71 (m, 1H), 3.74 (m, 1H)	62.4
7	1.37 (m, 1H), 1.75 (m, 1H)	36.6	22	1.61 (m, 1H), 1.82 (m, 1H)	25.2
8	2.76 (m, 1H)	44.8	23	0.92 (t, 3H, <i>J</i> = 7.2)	9.3
9	-	203.5			
10	6.36 (d, 1H, <i>J</i> = 15.6)	119.8			
11	7.34 (d, 1H, <i>J</i> = 15.6)	148.3			
12	-	135.8			
13	5.95 (d, 1H, <i>J</i> = 10.2)	141.7			
14	2.89 (m, 1H)	46.7			
15	4.97 (m, 1H)	75.1			

Table S9¹H- and ¹³C-NMR data for **9** in CDCl₃ (δ in ppm, J in Hz)

Table S10 Minimum inhibitory concentration (MIC) values (μg/mL) of 5-8 and erythromycinagainst a panel of medically-important human bacterial pathogens

	5	6	7	8	erythromycin
Acinetobacter baumannii ATCC17978ª	50	100	50	50	1.56
Uropathogenic <i>Escherichia coli</i> CFT073ª	50	50	100	50	6.25
Pseudomonas aeruginosa PA01ª	50	100	100	25	6.25
Streptococcus pyogenes 5448 ^b	50	>100	100	6.125	0.39
Streptococcus pyogenes NZ131 ^b	50	>100	50	6.125	0.19
Staphylococcus aureus USA300 ^b	12.5	25	6.25	1.56	1.56

^a Testing performed in RPMI with 5% LB, ^bTesting performed in CA-MHB media with 5% lysed horse blood