
414 • JID 2003:188 (1 August) • Kristian et al.

M A J O R A R T I C L E

Alanylation of Teichoic Acids Protects Staphylococcus
aureus against Toll-like Receptor 2–Dependent
Host Defense in a Mouse Tissue Cage
Infection Model

Sascha A. Kristian,1,2,4 Xavier Lauth,3 Victor Nizet,3 Friedrich Goetz,1 Birgid Neumeister,2 Andreas Peschel,1

and Regine Landmann4
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Staphylococcus aureus is inherently resistant to cationic antimicrobial peptides because of alanylation of cell
envelope teichoic acids. To test the effect of alanylated teichoic acids on virulence and host defense mediated by
Toll-like receptor 2 (TLR2), wild-type (wt) S. aureus ATCC35556 (S.a.113) and its isogenic mutant expressing
unalanylated teichoic acids (dlt�) were compared in a tissue cage infection model that used C57BL/6 wt and
TLR2-deficient mice. The minimum infective doses (MID) to establish persistent infection with S.a.113 were 103

and 102 colony-forming units (cfu) in wt and TLR2�/� mice, respectively. The corresponding MID for dlt� were
and 103 cfu in wt and TLR2�/� mice, respectively. Both mouse strains showed bacterial-load–dependent55 � 10

inflammation with elevations in tumor necrosis factor, macrophage inflammatory protein 2, and leukocytes, with
increasing proportions of dead cells. These findings indicate that alanylated teichoic acids contribute to virulence
of S. aureus, and TLR2 mediates host defense, which partly targets alanylated teichoic acids.

Staphylococcus aureus is a leading cause of community-

acquired infections of the skin, soft tissue, musculoskele-

tal system, respiratory tract, and endovascular system, as

well as hospital-acquired bacteremias and device-asso-

ciated infections [1]. As a prerequisite to establishing
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invasive infection, S. aureus has evolved means to cir-

cumvent host defenses [1–3]. These host defense rec-

ognition and evasion strategies of S. aureus are incom-

pletely understood [4].

Cationic antimicrobial peptides (CAMPs), such as de-

fensins, cathelicidins, and thrombocidins, represent an

important oxygen-independent defense mechanism of

the innate immune system of mammals to combat in-

vading pathogens [5, 6]. Defensins are found in various

human tissues and in neutrophils [7]; cathelicidins, in-

cluding human LL-37 and mouse cathelin-related anti-

microbial peptide (CRAMP) [8], are produced by ker-

atinocytes and polymorphonuclear neutrophils (PMNs).

S. aureus is inherently resistant to the antimicrobial ac-

tion of defensins [3, 9] and other CAMP [3]. Esterifi-

cation of cell-envelope components with amino acids

most likely represents one important determinant of this

resistance [5]; such modifications lead to a decrease in

the net negative surface charge of the bacteria and con-

sequently to the repulsion of CAMP [10, 11].

We have previously described an operon on the S.

aureus chromosome, dltABCD, the products of which
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catalyze the introduction of D-alanine into teichoic acids,

staphylococcal cell envelope polymers [10]. We showed that S.

aureus dlt knockout (dlt�) bacteria are highly susceptible to

isolated CAMP and oxygen-independent killing mechanisms of

neutrophils in vitro [12]. Both S. aureus and Listeria mono-

cytogenes dlt� bacteria were shown to be virulence attenuated

in murine sepsis models [12, 13]. However, it remained un-

proven whether this virulence attenuation reflected the ability

of teichoic acid alanylation to protect the bacteria from leu-

kocyte-dependent killing in vivo. To specifically address this

key issue, the present study compared the virulence of S. aureus

wild-type and dlt� bacteria in a mouse tissue cage infection

model [14, 15]. This model was chosen because it reproduces

the common characteristics of device-associated infections

where S. aureus is among the most frequently isolated patho-

gens [16]. These infections are characterized by a low initial

infecting inoculum of microorganisms, by the absence of spread

beyond the vicinity of the foreign body, and by a chronic evo-

lution until removal of the prosthesis [15]. A potential reason

for the persistence of infection is biofilm formation by the

bacteria. Because dlt� bacteria exhibit a dramatic reduction in

their ability to colonize artificial surfaces and to form biofilm

in vitro [17], additional interest to study the virulence of dlt�

S. aureus in the tissue cage system is provided. We adapted the

guinea pig tissue cage model [14, 18, 19] for the mouse, in

which leukocyte host-defense mechanisms can be monitored

and animals with targeted gene deletions are available for func-

tional studies.

Finally, to identify precise molecular mechanisms by which

teichoic acid alanylation allows S. aureus to evade host defense,

we selected the host pattern recognition receptor Toll-like re-

ceptor 2 (TLR2) for study [20, 21]. When studied in vitro,

TLR2 confers responsiveness of host leukocytes to heat-killed,

gram-positive bacteria, including S. aureus, and to purified cell

walls, peptidoglycan, lipoteichoic acid (LTA), or bacterial lipo-

proteins. After stimulation with these components, TLR2 me-

diates NF-kB translocation [22, 23] and cytokine or defensin

release [24, 25]. A protective role of TLR2 has been demon-

strated in murine models of S. aureus sepsis [26] and Strep-

tococcus pneumoniae meningitis [27]. However, it is not known

which TLR2 ligand plays the major role in S. aureus–induced

inflammation in vivo and whether TLR2 participates in non-

oxidative antimicrobial defense mechanisms to which S. aureus

with unalanylated teichoic acids are particularly sensitive. These

questions were addressed by comparing the host inflammato-

ry response to wild-type (wt) and dlt� S. aureus in C57BL/6 wt

and TLR2�/� mice.

MATERIALS AND METHODS

Preparation of staphylococcal strains. S. aureus ATCC35556

(S.a.113) [28] and isogenic dltA� bacteria were used for ex-

perimental infection of the animals. The procedures used for

disruption of the dltABCD operon, for plasmid construction,

and for phenotypic and genotypic characterizations of dlt� have

been described in detail elsewhere [10]. The staphylococcal

strains were grown overnight in tryptic soy broth at 37�C with-

out shaking, subsequently washed 3 times in large volumes of

0.9% NaCl (pH 7.4), and resuspended in saline immediately

before use.

Mice and tissue cage model. We kept 12–16-week-old fe-

male C57BL/6 wt mice (purchased from RCC) and TLR2�/�

mice, which had been backcrossed for 6 generations on a

C57BL/6 background, under specific pathogen–free conditions

in the Animal House of the Department of Research, University

Hospitals Basel, according to the regulations of the Swiss vet-

erinary law. Mice were anesthetized via intraperitoneal injection

of 100 mg/kg ketamine (Ketalar; Warner-Lambert) and 20 mg/

kg xylazinum (Xylapan; Graeub), and a sterile tissue cage was

implanted subcutaneously in the back [29, 30]. The cages (in-

ternal and external diameters, 8 and 10 mm, respectively; length,

30 mm; internal volume, 1.84 mL) were identical to those used

in the guinea pig foreign body infection model, as described

elsewhere [15], and consisted of closed polytetrafluoroethylene

Teflon cylinders with 130 regularly spaced 0.2-mm holes and

contained 8-sinter glass beads. After surgery, mice were treated

with buprenorphine (2 mg/kg subcutaneously twice daily) for

48 h to treat postoperative pain.

Two weeks after surgery, sterility of the tissue cage was ver-

ified, and 200 mL of suspensions of S. aureus was injected per-

cutaneously with 25-gauge needles. As reported with tissue cage

infections in guinea pigs [15], mice never developed bacteremia

and showed no weight change during 3 weeks of infection.

Immunosuppression of mice with cyclophosphamide.

Mice were treated with cyclophosphamide (200 mg/kg intra-

peritoneally [ip]) or as control with saline (ip) every 48 h

starting 2 days before experimental infection.

Sampling of tissue cage fluid (TCF). Mice were anesthe-

tized by inhalation of isofluorane (Abbott); 150-mL samples of

TCF were drawn by percutaneous aspiration and transferred

into sterile microreaction tubes containing 15 mL of 0.9% NaCl

and 1.5% EDTA (pH 7.4), to avoid clotting. In selected ex-

periments, the pH of TCF samples was measured with pH

indicator strips (Merck).

Quantification of planktonic and adherent bacteria. To

determine the load of planktonic (free-floating) bacteria in TCF,

serial dilutions of the samples were plated on Mueller-Hinton

broth (MHB) agar plates. Colony-forming units were enu-

merated after 24-h incubation at 37�C. To quantify the number

of adherent staphylococci in the Teflon cages and on the glass

beads, we used a method described elsewhere [31]. In brief,

mice were killed, and tissue cages were explanted under sterile

conditions 6 h to 21 days after infection. Glass beads and cages
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Figure 1. In vivo bacterial growth for 21 days after infection with
or cfu of either Staphylococcus aureus3 35.3 � 2.7 � 10 7.7 � 2.3 � 10

ATCC35556 (S.a.113) (�) or S. aureus ATTC35556 dltA knockout bacteria
(dlt�) (�), respectively. Data are from at least 7 experiments.mean � SD
* ; ** (analysis of variance repeated measurements).P ! .05 P ! .005

were washed 3 times with saline and separately transferred into

glass tubes containing 2–4 mL of 0.9% NaCl, EDTA (0.15%),

and Triton-X (0.1%) (pH 7.4). The tubes were vortexed vig-

orously for s, placed into an ultrasonic bath, and son-3 � 15

icated for 3 min at 200 W (Labsonic 2000; Bender & Hohbein).

More than 95% of adherent S. aureus can be detached by this

procedure [15]. After additional vortexing, appropriate vol-

umes of serial dilutions were spread on MHB agar plates to

quantify colony-forming units.

Counting of leukocytes, quantification of viable leukocytes,

and identification of cell type in TCF. Leukocytes were quan-

tified with a Coulter counter (Coulter Electronics). The per-

centage of viable leukocytes was assessed by trypan blue exclu-

sion. Leukocyte differentiation in TCF was performed by Diff-

Quick (Dade Behring) staining of cytospins and examination

under high-power light microscopy.

Leukocyte viability in infected TCF. TCF of uninfected

and infected mice (14 days after infection) was pooled sepa-

rately and centrifuged at 400 g for 10 min to remove cellular

host components. Infected TCF was rendered free of residual

thrombocytes and bacteria by centrifugation for 5 min at 25,000

g. Pelleted cells of uninfected TCF were then resuspended in

supernatants of infected cell-free TCF. After 6-h incubation at

37�C with gentle shaking in sterile 14-mL polypropylene tubes,

the viability of leukocytes was assessed as described above.

Cytokine assays. Measurement of tumor necrosis factor

(TNF) and macrophage inflammatory protein (MIP)–2 in the

supernatants of the samples were carried out by sandwich ELISAs

that used the OptEIA mouse TNF set (PharMingen) and the

Quantikine M mouse MIP-2 set (R&D Systems), respectively.

FACScan analysis. Phenotypes of TCF leukocytes were

analyzed by FACS after staining with the following antibodies

[32]: anti-CD11b (MAC-1; Pharmingen) and anti-CD16/CD32

(FcgII/III receptor; Pharmingen). Rat IgG2b (Pharmingen) was

used as isotype control. Fluorescein-conjugated goat anti–rat

IgG (Jackson Laboratories) was used as secondary antibody.

In vitro growth of staphylococci in TCF. S.a.113 and dlt�

bacteria were grown and washed as described above and ad-

justed to cfu/mL in 100-mL pooled uninfected TCF,3∼ 5 � 10

from which cellular components were removed by centrifuga-

tion at 400 g for 10 min and incubated at 37�C without shaking.

After 24 h, 50 mL of serial dilutions was spread on MHB agar

plates to quantify colony-forming units.

Susceptibility of S.a.113 and dlt� to gallidermin and

CRAMP. For bacterial susceptibility testing to gallidermin,

TCF of wt or TLR2�/� mice containing S.a.113 or dlt� was

drawn 3 weeks after infection. In parallel, in vitro cultures of

S.a.113 and dlt� were grown in tryptic soy broth and washed

as described above. Bacteria were adjusted to cfu/mL41–2 � 10

by dilution in saline. We plated 100 mL of this suspension on

agar containing 0–8 mg/mL gallidermin and incubated them

for 24 h at 37�C. Determination of the MIC and MBCs of

CRAMP against S.a.113 or dlt� bacteria was performed as de-

scribed elsewhere for Streptococcus pyogenes [33].

Statistical analysis. Results of bacterial growth, TNF and

MIP-2 levels, leukocyte numbers, and proportion of leukocytes

alive were compared by analysis of variance for repeated mea-

surements. was considered to be statistically significant.P ! .05

RESULTS

Staphylococcal growth in wt mice infected with S.a.113 or dlt�

bacteria. Our previous results in a mouse sepsis model re-

vealed attenuated virulence of S. aureus dltA knockout bacteria

(dlt�), which lack D-alanine modifications in teichoic acids,

compared with wt S. aureus [12]. To characterize local host

defense mechanisms to which dlt� bacteria are more susceptible

than wt S. aureus (S.a.113), we adapted a guinea pig tissue cage

model [14, 15, 19] to the mouse. Tissue cages implanted in wt

mice were experimentally infected with S.a.113 or dlt�, and the

course of disease was compared over a period of 3 weeks. Tis-

sue cage infections in guinea pigs can be established with a low

inoculum (e.g., 100–1000 cfu) for most S. aureus strains [15].

Similarly, the minimum infective dose (MID) of S.a.113 for

induction of persistent infections in wt mice was found to be

low ( cfu). In subsequent experiments, an inoculum of31 � 10

to cfu of S.a.113 was used to ensure coloni-35.3 � 2.7 � 10

zation of tissue cages. S.a.113 showed in vivo growth and per-

sistence in 10 of 10 experiments (figure 1), multiplied to

cfu/mL within 3 days, and reached a plateau of growth61 � 10

at around cfu/mL within 6–9 days. It remained at a75 � 10

constant density until day 21. In contrast to S.a.113, dlt� bac-

teria were cleared from tissue cages in all experiments (n p

) after delivery of a similar inoculum ( cfu). In37 7.7 � 2.3 � 10

6 of 7 experiments, no bacteria could be detected in TCF within

2 days (figure 1).
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Figure 2. Tumor necrosis factor (TNF) concentration (A); macrophage inflammatory protein (MIP)–2 concentration (B); leukocyte count (C); and
proportion of viable leukocytes (D) in tissue cage fluid 21 days after infection with either Staphylococcus aureus ATCC35556 (S.a.113) (�) or S. aureus
ATTC35556 dltA knockout bacteria (dlt�) (�) bacteria. Data are of at least 7 experiments in each group. * ; ** (analysismean � SD P ! .05 P ! .005
of variance repeated measurements).

Quantification of planktonic bacteria does not take into ac-

count bacteria adhering to the inner surface of the implants

and on the glass beads in the cages. Moreover, in the guinea

pig model, staphylococci were shown to persist on the tissue

cage surface, despite sterile TCF [34]; therefore, surface-ad-

herent S.a.113 and dlt� bacteria were quantified 3–21 days after

infection (data not shown). Surface-adherent bacteria were

never found in the presence of sterile TCF, indicating that wt

mice infected with dlt� bacteria were completely cured within

1–6 days. Samples from the bacterial preparations of the 2

staphylococcal strains grew equally well in MHB in vitro, in-

dicating a similar fitness before infection (data not shown).

Because we did not obtain infection with 103 cfu of dlt�, the

MID of dlt� was ascertained by serially increasing the inocu-

lum in log steps. The dlt� inoculum necessary to establish a

persistent infection was found to be between and55 � 10

cfu, 500–1000-fold higher than the MID of S.a.113.61 � 10

Infective doses of dlt� bacteria showed growth behavior similar

to S.a.113 (data not shown), excluding differences in bacterial

replication responsible for the disparity in MID. The higher

MID of dlt� bacteria in the tissue cage model identifies teichoic

acid alanylation as a virulence factor of S. aureus in foreign

body infections.

Phenotypic and functional host responses of wt mice during

infection with S.a.113 or dlt�. To understand the contri-

bution of host inflammatory responses to differences in vivo

survival of S.a.113 and dlt�, several parameters of host response

were monitored in wt mice inoculated with the above-men-

tioned cfu of either bacterial strain. Leukocyte via-35–8 � 10

bility was evaluated, because killing of eukaryotic cells by staph-

ylococci is known to occur [35]. Baseline leukocyte counts in

the range of cells/mL were found in un-4 31.4 � 10 � 4.6 � 10

infected tissue cages and they were composed of a larger PMNs

( ) and a smaller monocyte ( ) fraction.70% � 6% 24% � 6%

These results are in agreement with those of previous reports

[14, 30].

TNF release into S.a.113-infected cages was biphasic (figure

2A). A first peak with a mean value of 500 pg/mL was observed

on day 1 in 5 of 10 mice, and a second peak with values between

800 and 1000 pg/mL occurred between days 7 and 10. After

infection with dlt�, only 3 of 7 mice had detectable TNF ele-

vations; the average levels of TNF were much lower than after

S.a.113 infection (figure 2A). Thus, TNF release correlated with

the level and persistence of the bacterial load.

Leukocyte activation was further assessed by measuring ex-

pression of the cell surface receptors CD11b, representing the

b-chain of the complement receptor CR3, and CD16/CD32,

which is representative of FcgII/III receptors. Both receptors,

which are involved in phagocytosis [36] and expressed in mono-

nuclear and PMNs cage leukocyte populations, were measured

before and 24 h after infection. The percentage of CD11b- and

CD16/CD32-positive leukocytes remained constant at 90% and

96%, respectively, after infection with either S.a.113 or dlt�

bacteria. The mean fluorescence intensity of CD11b-positive

cells increased -fold and -fold 24 h af-1.39 � 0.28 1.42 � 0.13

ter infection in S.a.113- and dlt�-infected cages, respective-
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Figure 3. Effect of in vivo leukocyte depletion on bacterial growth in
tissue cages. Growth of Staphylococcus aureus ATCC35556 (S.a.113)
(black symbols) and S. aureus ATTC35556 dltA knockout bacteria (dlt�)
(white symbols) bacteria in wild-type mice treated with saline (circles)
or with cyclophosphamide (triangles). Results are colony-forming unit
values of 1 representative experiment.

ly, whereas the expression of CD16/CD32 remained unaltered

-fold and -fold, respectively). The re-(0.88 � 0.14 1.05 � 0.17

sults indicate that complement receptor upregulation was trig-

gered independently of the virulence potential of the bacteria.

In humans, neutrophil accumulation is induced by IL-8. IL-

8 has not been found in mice, but MIP-2 may serve as a neu-

trophil chemotactic factor with homologous function, as shown

in a murine lung injury model [37]. After infection with

S.a.113, the concentrations of MIP-2 in TCF increased steadily

from day 1 to day 21 (figures 2B). In contrast, the dlt� mutant

did not induce MIP-2, except for one mouse, which showed a

modest release of MIP-2 beyond day 14 despite a sterile TCF.

Elevated MIP-2 levels were followed by an influx of leukocytes

into S.a.113-infected cages (figure 2C). The proportion of

PMNs increased from before infection to70% � 6% 83% �

between day 2 and day 21 after infection, corroborating a1%

role for MIP-2 in neutrophil attraction in vivo. Cells migrated

slowly into S.a.113-infected cages up to day 6 after infection

but rapidly increased thereafter, culminating in a -26.7 � 15.7

fold increase of total leukocyte numbers 21 days after infection.

The leukocyte influx was completely absent (figure 2C), and

the proportional changes among PMNs and monocytes did not

appear (data not shown) in dlt�-infected tissue cages, which is

in agreement with the low MIP-2 levels observed in these mice.

Beginning at day 3 after infection with S.a.113, when bacteri-

al colony-forming unit and leukocyte counts had reached

∼ /mL and /mL, respectively, the proportion of vi-6 41 � 10 2 � 10

able leukocytes steadily decline from to95% � 3% 48% �

through day 21 after infection (figure 2D). Because of the10%

increasing proportions of dead cells, viable leukocyte numbers

increased only 13-fold during the 3 weeks of infection. In con-

trast, all leukocytes in dlt�-infected cages remained alive. Cell

death in cages infected with S.a.113 could not be attributed to

an altered pH, because pH values remained constant at 7.8 �

throughout the 21-day infection period. Furthermore, cell0.3

death was unlikely to be due to S. aureus–derived exotoxins [38],

known to act rapidly [38], because uninfected cage leukocytes

were not lysed during a 6-h incubation with infected cell-free

TCF (data not shown).

In summary, several parameters of the host inflammatory

response in the tissue cages were linked to growth and persis-

tence of S.a.113 bacteria, absent in the dlt�-infected mice.

Role of leukocytes in host defense against dlt� bacteria.

We showed that S.a.113 and dlt� have similar growth properties

in MHB medium in vitro. In contrast, we found the MID for

dlt� bacteria is much higher than that for S.a.113. We therefore

tested whether dlt� bacteria were more susceptible to soluble

factors and/or to leukocytes present in TCF. S.a.113 and dlt�

grew similarly when cultured in vitro in TCF of uninfected

mice after removing cellular components by centrifugation

(data not shown). This finding indicates that the clearing of

dlt� bacteria in wt mice was due to cell-associated host factors

absent in uninfected, cell-free TCF.

To prove an essential role for leukocytes in clearance of dlt�

bacteria, wt mice were rendered leukopenic by means of the

immunosuppressive drug cyclophosphamide. Cyclophospha-

mide injections reduced leukocyte numbers in uninfected cages

by 75% to leukocytes/mL. As shown in3 33.5 � 10 � 1.6 � 10

figure 3, dlt� bacteria were no longer cleared in leukopenic wt

mice and grew at a similar rate as S.a.113. These results strongly

suggest that leukocytes mediate the host defense against S. au-

reus in tissue cage infections.

Role of TLR2 in host defense against dlt� bacteria.

TLR2�/� mice were shown to be highly susceptible to infection

by S. aureus [26] and S. pneumoniae [27]. We tested whether

TLR2 participates in the immune defense against S.a.113 and

dlt� bacteria during tissue cage infection by comparing the course

of disease in wt and TLR2�/� mice. First, the MIDs for S.a.113

and dlt� were determined in TLR2�/� mice. The average MIDs

of 102 cfu (S.a.113) and 103 cfu (dlt�) in TLR2�/� mice (figure

4A) were 10-fold ( ) and 500–1000-fold lower, respectively,P ! .05

than those observed in wt mice (table 1). Thus, TLR2 is involved

in murine host defense against S. aureus in tissue cage infections,

and its role is prominent in the rapid clearance of dlt� bacteria

by wt mice. However, even in TLR2�/� mice, dlt� bacteria had

a 10-fold higher MID than S.a.113 (table 1, figure 4A). This

reflects a higher susceptibility of the mutant bacteria to additional

host defense mechanisms not related to TLR2.

Course of disease in TLR25/5 mice. To assess the evolution

of infection in the absence of TLR2-mediated defense mech-

anisms, TLR2�/� mice were infected with the same inocula of

S.a.113 and dlt� as used in the wt mice challenges. As shown

in figure 4B, S.a.113 grew in TLR2�/� mice and reached a

plateau of growth 3 days after infection. The bacterial growth

rate was faster than that observed in wt mice, where colony-
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Figure 4. A, Determination of the minimum infective dose of Staphylococcus aureus ATCC35556 (S.a.113) and S. aureus ATTC35556 dltA knockout
bacteria (dlt�) in Toll-like receptor 2 (TLR2)–deficient mice. Mice were infected with 101 cfu (circles), 102 cfu (triangles), or 103 cfu (squares) of S.a.113
(black symbols) or dlt� bacteria (white symbols), respectively. Results of 1 representative experiment of 2 performed are shown. B, Effect of TLR2
deficiency on growth of S.a.113 (�) or dlt� bacteria (�). Data are the geometric mean of at least 7 experiments in each group. * (analysisP ! .05
of variance repeated measurements).

Table 1. Minimum infective doses (MIDs) of Staphylococcus
aureus in 2 kinds of mice.

S. aureus strain

MID, cfu

wt mice TLR2�/� mice

S.a.113 1 � 103 (n p 4) 1 � 102 (n p 3)a

dlt� 5 � 105 to 1 � 106 (n p 5) 1 � 103 (n p 2)

NOTE. Average cfu counts, which caused a persistent infection, were
set as MID. In each experiment, inocula ranging from 101 to 106 cfu were
used to infect the tissue cages of wild-type and Toll-like receptor 2 deficient
(TLR2�/�) mice. dlt�, S. aureus ATTC35556dltA knockout bacteria; S.a.113, S.
aureus ATCC35556; wt, C57BL/6 wild type.

a cfu counts required for infection were compared by Mann-Whitney U test;
the difference for S.a.113 between wild-type and TLR2�/� mice was significant
( ).P ! .05

forming unit counts were maximal only after 6–9 days (figures

4 and 1). The dlt� bacteria, which were cleared in wt mice

(figure 1), proliferated in TLR2-deficient hosts ( ; figuren p 7

4B), thus identifying a role of TLR2 in murine immune defense

against bacteria expressing unalanylated teichoic acids. Nev-

ertheless, the dlt� bacteria showed significantly delayed growth,

compared with wt bacteria ( ; figure 4B), reaching max-P ! .01

imum levels on day 14—that is, 11 days later than S.a.113.

TCF from untreated TLR2�/� mice showed 41.1 � 10 �

leukocytes/mL with PMNs and35.2 � 10 74% � 9% 17% �

monocytes, which was similar to the values found in wt7%

mice. Furthermore, bacterial replication in the tissue cage elic-

ited an inflammatory response in the TLR2�/� host similar to

that observed in wt mice. This response was characterized by

increasing concentrations of TNF (figure 5A) and MIP-2 (figure

5B), by leukocyte influx (figure 5C), and by a decrease in leu-

kocyte viability (figure 5D). However, for all parameters mea-

sured, infection with S.a.113 induced a stronger response than

did infection with the dlt� mutant. The S.a.113-induced TNF

response was biphasic, with a high peak after 1 day and a plateau

from day 7 onward. In contrast, dlt� infection induced TNF

only in the late phase, and average values were lower than in

S.a.113-infected mice (figure 5A). MIP-2 was also induced fas-

ter and significantly more strongly in S.a.113-infected than in

dlt�-infected TLR2�/� mice (figure 5B).

The delayed, weaker TNF and MIP-2 responses are most

likely the consequence of the slower growth of the mutant

bacteria in TLR2�/� mice. Infection in TLR2�/� mice was fol-

lowed by leukocyte influx. Total leukocyte counts in S.a.113-

and dlt�-infected cages increased -fold and11.5 � 6.4 12.8 �

-fold 21 days after infection, respectively (figure 5C). How-5.5

ever, the maximum leukocyte concentration in TLR2�/� mice

was lower ( leukocytes/mL) than that in wt mice52.8 � 10

( leukocytes/mL; figure 2C). Leukocyte influx was also55.9 � 10

accompanied by a decreasing fraction of living cells (figure 4E).

In S.a.113-infected cages, viability started to decline after day

2, whereas, in dlt�-infected cages, it started to decrease after

day 7.

Susceptibility of S.a.113 and dlt� to antibacterial pep-

tides. CAMPs are deployed by the innate immune system in

response to S. aureus infections. In a previous study, human

PMNs exhibited a stronger bactericidal activity in vitro toward

dlt� bacteria than on wt S.a.113 [12]. This difference paralleled

the higher susceptibility of dlt� to CAMP [12]. It is known that

TLRs participate in the induction of CAMP [25]. In tissue cages,

the majority of the cells are PMNs, which are known to release

a CAMP of the cathelicidin family, CRAMP [33]. Therefore,

we compared the susceptibility of S.a.113 and dlt� bacteria to

CRAMP in vitro. The MICs and MBCs of CRAMP were 4-fold

lower for dlt�, compared with S.a.113 (figure 6A). To confirm

a differential sensitivity of S.a.113 and dlt� bacteria to CAMP

in vivo, the susceptibility of S.a.113 and dlt� to gallidermin, a

CAMP of bacterial origin, was assessed after harvesting the

bacteria from cages 3 weeks after infection. The gallidermin

concentration required to kill 50% of the applied staphylococci

was ∼1 mg/mL for S.a.113 and !0.3 mg/mL for dlt� bacteria

(figure 6B). This result supports a hypothesis that neutrophil-
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Figure 5. Course of disease in Toll-like receptor 2–deficient mice. A, Tumor necrosis factor (TNF) concentration; B, macrophage inflammatory protein
(MIP)–2 concentration; C, leukocyte counts; D, leukocyte viability in tissue cages during 21 days after infection with Staphylococcus aureus ATCC35556
(S.a.113) (�) or S. aureus ATTC35556 dltA knockout bacteria (dlt�) (�) bacteria. Data are of at 7 least experiments in each group.mean � SD
* ; ** (analysis of variance repeated measurements).P ! .05 P ! .005

derived CAMP such as CRAMP could be responsible for the

killing of dlt� bacteria in tissue cages in wt mice.

DISCUSSION

In the present study, we investigated the role of the dltABCD-

mediated resistance against cationic antimicrobial host com-

ponents in S. aureus virulence, and we investigated whether

this immune escape mechanism protects against TLR2-depen-

dent host defense. In a mouse tissue cage infection model, we

found that alanylated teichoic acids protect against host de-

fense—in large part, those pathways mediated by TLR2.

S. aureus teichoic acids mediate resistance against host defense

by several mechanisms. Esterification of teichoic acids with ami-

no acids decreases the net negative surface charge of the staph-

ylococcal cells, thereby conferring resistance to CAMPs [10, 11]

and other nonoxidative antimicrobial effector mechanisms, in-

cluding phospholipase A2 [39]. Indeed, dlt� bacteria with unala-

nylated teichoic acids are more susceptible to CAMP [10] and

phospholipase A2 [39]. Alanylation of teichoic acids also affects

the capacity of the bacteria to adhere on glass and plastic surfaces;

accordingly, dlt� bacteria exhibit reduced adhesion to artificial

surfaces [17].

In this study, we investigated how alanylation of teichoic

acids affect S. aureus survival during a local infection in vivo.

Furthermore, teichoic acids were studied as potential targets of

the pattern recognition receptor TLR2, prompted by the fact

that purified LTA activates cells through TLR2 [22]. In contrast

to LTA, cell-wall teichoic acid has not yet been examined for

its interaction with TLR2. S. aureus cell-wall teichoic acid differs

from LTA in its lack of a lipid anchor and in the nature of its

repeating sugar units. Yet, we hypothesize that TLR2 is engaged

by both teichoic acid and LTA and that the TLR2-mediated

effector mechanisms are influenced by the charge (i.e., alanyla-

tion) of the 2 components. TLR2 has 2 important functions:

it transmits a proinflammatory signal in response to LTA, pep-

tidoglycan, or lipoprotein stimulation [22, 23, 40]; and it exerts

a protective role for the host during infection with S. aureus

and other gram-positive bacteria. The mechanism of this pro-

tective role remains unknown.

We found that dlt� was less virulent than wt S.a.113, as

determined by the 500–1000-fold higher MID of the mutant

in wt mice. This finding indicates that the susceptibility to

oxygen-independent antimicrobial host mechanisms facilitates

bacterial clearing. Indeed, dlt� were more sensitive to CRAMP

in vitro and gallidermin ex vivo. Future studies that use

CRAMP�/� mice, which lack the mouse neutrophil cathelicidin

CRAMP [33], will address whether murine cathelicidins are

responsible for clearing of dlt� in the tissue cage model. An

increased sensitivity to phospholipase A2, which we described

recently for dlt� bacteria [39], could not explain clearing of the

dlt� mutant in our model, because C57/BL6 mice are deficient

in phospholipase A2 [41]. It is also unlikely that dlt� bacteria

were more sensitive to oxidative killing because they were

cleared equally in vivo in the presence and absence of the free

radical scavenger a-phenyl-ter-butylnitrone (data not shown),
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Figure 6. A, Susceptibility of Staphylococcus aureus ATCC35556 (S.a.113) (black bars) and S. aureus ATTC35556 dltA knockout bacteria (dlt�)
(white bars) to mouse cathelicidin cathelin-related antimicrobial peptide (CRAMP), as assessed by the MIC and the minimum bactericidal concentration
(MBC) in vitro. Studies were performed in duplicate. B, Susceptibility of S.a.113 (black symbols) and dlt� (white symbols) bacteria to gallidermin,
grown in vivo (circles) or in vitro (squares). Values of 1 representative experiment are expressed as percentages of cfu obtained on agar plates
containing no gallidermin.

an agent known to effectively decrease oxidative injury in group

B streptococcal meningitis [42]. Finally, clearing of dlt� bacteria

is apparently not related to a reduced colonization on glass

surfaces in vivo, because no differences were found between

S.a.113 and dlt� in adhesion.

Because dlt� are more susceptible to CAMP, it was interesting

to investigate whether innate receptors, which are known to con-

tribute to CAMP release, participate in their elimination. TLR2

could play such a role, although so far only b-defensin was shown

to be induced via TLR2 [25] and this induction was measured

after stimulation with bacterial lipoprotein. Up-regulation of

cathelicidin expression after infection with live bacteria occurs

by an unknown mechanism. Future studies will address the ques-

tion whether TLR2 modulates cathelicidin release. We found the

MID of dlt� was 1000-fold lower in TLR2�/� mice than in wt

mice. Although 105 to 106 cfu were required in wt mice, only

103 cfu caused an infection in TLR2�/� mice. This means that

TLR2 recognition and/or effector mechanisms are important in

the control of dlt� bacteria. Of interest, dlt� remained less virulent

than S.a.113 in TLR2�/� mice, indicating that TLR2-independent

mechanisms also contribute to bacterial clearance.

Whether TLR2 participates directly in bacterial clearance is

not clear. It is unlikely that phagocytosis is influenced by TLR2,

because zymosan uptake in macrophages was shown to be TLR2

independent [43]. It is possible that engagement of TLR2 leads

to bacterial killing through an increased generation of CAMP,

via reactive oxygen species or via release of chemokines that

recruit additional leukocytes to the site of infection. Further-

more, TLR2 activation might induce killing via a nitric oxide–

dependent mechanism, as shown during infection with My-

cobacterium tuberculosis [44].

Our tissue cage model also demonstrates that TLR2 contrib-

utes moderately to efficient killing of S.a.113. The MID of S.a.113

was 10-fold lower in TLR2�/� mice than in wt mice. Early S.a.113

growth was faster in the absence of TLR2. Comparison of S.a.113

and dlt� in the 2 mouse strains implies that alanylated teicho-

ic acids protect S. aureus from TLR2-mediated defense. Three

mechanisms not mutually exclusive can be envisaged. First, dlt�

bacteria may bind to host cell TLR2 more strongly than S.a.113.

Second, they may bind to other phagocytic receptors, which leads

to efficient clearing only in the presence of TLR2. Third, both

S.a.113 and dlt� may activate leukocytes to an equivalent degree,

but the mutant may be killed faster and better because of its

increased susceptibility to CAMP. It remains to be determined

which of these mechanisms is TLR2 dependent.

Our results deserve 2 further comments. In tissue cage infec-

tion, the inflammatory response was very strong. However, the

onset of the inflammatory response was delayed and strictly cor-

related with bacterial number. Release of MIP-2 and TNF showed

a biphasic pattern. After 24 h of infection, small amounts of both

mediators were detected, and these levels were not associated

with cessation of bacterial growth. Of interest, this early initial

peak was present in TLR2�/� mice and therefore is mediated by

TLR2-independent mechanisms. We also found an increased ex-

pression of CR3 during the early stage of infection in both mouse

strains, again independent of TLR2. The inflammation response

in this model was then characterized by a second phase with

release of extremely large amounts of MIP-2 and TNF, high

leukocyte numbers, and massive leukocyte cell death. This de-

layed and apparently insufficient response appears when the bac-

teria reach high numbers and does not affect bacterial clearance.

This phenomenon is likely a by-product of the closed infection

model and might resemble the pathophysiology of implant-as-

sociated infection in humans.

A final comment concerns the association of S. aureus viru-

lence with the expression of alanylated teichoic acids. In the tissue

cage model, bacteria have a growth advantage as a consequence

of the delayed inflammatory response. Nevertheless, S. aureus is

immediately cleared when it expresses unalanylated teichoic acids

that render them highly susceptible to the action of CAMP. Future

strategies that target enzymes encoded by the dltABCD operon

may be of benefit in therapy of S. aureus infection.
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