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Summary

Group A Streptococcus (Streptococcus pyogenes),
group B Streptococcus (Streptococcus agalactiae)
and Streptococcus pneumoniae (pneumococcus)
are host-adapted bacterial pathogens among the
leading infectious causes of human morbidity and
mortality. These microbes and related members of
the genus Streptococcus produce an array of
toxins that act against human cells or tissues,
resulting in impaired immune responses and
subversion of host physiological processes to
benefit the invading microorganism. This toxin
repertoire includes haemolysins, proteases,
superantigens and other agents that ultimately
enhance colonization and survival within the host
and promote dissemination of the pathogen.

Introduction

The genus Streptococcus comprises several important
species of human and animal pathogens, most specifically
adapted to survive within a single host species. As host-
adapted pathogens, streptococcal species have evolved
distinctive repertoires of protein and non-protein toxins

that play crucial roles in colonization, pathogenesis and
dissemination. While there are examples of streptococcal
toxins that are represented across species boundaries,
many streptococcal toxins are species specific or even
limited to certain clonal lineages within an individual
species. A number of these toxins have found utility as
vaccine antigens or as novel therapeutics. In this review,
we divide our examination of streptococcal toxins into four
groups: haemolysins, proteases, superantigens (SAgs)
and miscellaneous toxins. The best-studied individual
examples from each class from across the genus
Streptococcus are used to illustrate the function of these
toxin molecules and their contribution to the disease
process.

Haemolysins

The complete lysis of red blood cells by streptococci,
known as β-haemolysis, was first observed in 1895 and is
embodied by the characteristic zone of clearing surround-
ing bacterial colonies on the surface of blood agar medium
(Ayers and Rupp, 1922; Molloy et al., 2011). This section
summarizes our current understanding of streptococcal
β-haemolysins/cytolysins (β-h/c) and their key role in
pathogenesis (Table 1).

Streptolysin S

The potent membrane-active haemolysin streptolysin S
(SLS) is secreted by 99% of all group A Streptococcus
(GAS) isolates at stationary phase (Yoshino et al., 2010)
and is related to the class I bacteriocin family of
proteinaceous toxins and antimicrobial peptides (Nizet
et al., 2000; Cotter et al., 2005). SLS belongs to the
thiazole/oxazole-modified microcin class of natural prod-
ucts, a family of diverse ribosomally produced peptides
that are post-translationally modified to contain thiazole
and (methyl)oxazole heterocycles from cysteine, threo-
nine and serine residues (Mitchell et al., 2009; Melby
et al., 2011). The activity of SLS is both temperature and
concentration dependent and is principally responsible for
the characteristic zone of β-haemolysis surrounding GAS
colonies cultured on blood agar plates (Betschel et al.,
1998; Nizet et al., 2000). SLS is encoded by the
chromosomal SLS-associated gene (sag) locus, a con-
served nine-gene operon comprised of contiguous genes
sagA to sagI (Nizet et al., 2000). The mature SLS is a
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~2.7 kDa oxygen-stable and broad-spectrum cytolytic
toxin that forms hydrophilic pores in cholesterol-containing
cytoplasmic membranes to induce irreversible osmotic
lysis of host cells (Todd, 1938; Bernheimer, 1967;
Ginsburg, 1999; Carr et al., 2001). The plasma membrane
damage caused by pore-forming toxins induces signalling
cascades in the host cell to promote membrane repair,
metal ion homeostasis and a low-energy state whereby
protein synthesis is arrested (Gonzalez et al., 2008, 2011).
The sagA gene encodes pre-SLS, while the downstream

genes are required for post-translational modifications,
heterocycle formation, processing and export of the
mature SLS exotoxin (Nizet et al., 2000; Nizet, 2002;
Molloy et al., 2011). SLS enhances GAS pathogenicity by

lysing a broad spectrum of host cells including erythro-
cytes (red blood cells), lymphocytes, neutrophils, plate-
lets, sub-cellular organelles (e.g. lysosomes and
mitochondria) and several other mammalian cell types
(Ofek et al., 1970; Betschel et al., 1998), but not bacteria
with intact cell walls (Bernheimer, 1966). In a murine
model of cutaneous infection, GAS strains lacking SLS
activity were less virulent than the wild-type (WT) isogenic
parental strain (Betschel et al., 1998; Mitchell et al., 2009).
Soft tissue damage in mice associated with bacterial
proliferation, inflammation, vascular injury and formation of
necrotic lesions also depends on the activity of SLS in GAS,
group G Streptococcus (GGS) and Streptococcus iniae
(Betschel et al., 1998; Limbago et al., 2000; Fuller et al.,

Table 1. Streptococcal haemolysins.

Haemolysin Streptococcal species Virulence role References

Streptolysin S family
haemolysins
Streptolysin S Streptococcus

pyogenes
Lysis of erythrocytes,
lymphocytes, neutrophils,
platelets, sub-cellular organelles

(Sierig et al., 2003; Miyoshi-
Akiyama et al., 2005; Lin et al.,
2009)

Streptococcus
dysgalactiae
ssp. equisimilis

ND (Humar et al., 2002;
Hashikawa et al., 2004)

Streptococcus equi
ssp. equi

ND (Flanagan et al., 1998;
Hashikawa et al., 2004)

Streptococcus
iniae

Lysis of erythrocytes, neutrophils,
lymphocytes

(Locke et al., 2007)

Streptococcus
canis

ND (Richards et al., 2012)

Streptococcus
anginosus ssp.
anginosus

ND (Tabata et al., 2013;
Asam et al., 2015)

Streptococcus
constellatus ssp.
constellatus

ND (Tabata et al., 2014)

Cholesterol-dependent
cytolysins
Streptolysin O S. pyogenes Disrupts cytoplasmic integrity of

erythrocytes, leukocytes,
macrophages, platelets, epithelial cells

(Limbago et al., 2000;
Sierig et al., 2003;
Brosnahan et al., 2009;
Timmer et al., 2009)

Translocates NAD-glycohydrolase
(Streptococcus pyogenes NAD-
glycohydrolase) toxin into epithelial cells

(Madden et al., 2001)

S. canis ND (Richards et al., 2012)
S. dysgalactiae
ssp. equisimilis

ND (Tanaka et al., 2008)

Pneumolysin Streptococcus
pneumoniae

Contributes to proliferation in
whole blood, and colonization of
the nasopharynx and lungs

(Berry et al., 1989b;
Kadioglu et al., 2000;
Reiss et al., 2011)

Suilysin Streptococcus suis Cytotoxic to endothelial cells,
epithelial cells, macrophages and
neutrophils

(Allen et al., 2001;
Lun et al., 2003)

β-Haemolysin/cytolysin Streptococcus
agalactiae

Induces proinflammatory
responses by human brain
microvascular endothelial cells,
neuronal and hepatocyte apoptosis,
promotes intrauterine colonization

(Ring et al., 2002;
Doran et al., 2003;
Liu et al., 2004;
Reiss et al., 2011)

Intermedilysin Streptococcus
intermedius

Forms cytotoxic pores in CD59-positive
cells, promotes adherence to and
invasion of human liver cells

(Sukeno et al., 2005)

ND, not determined.
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2002; Humar et al., 2002; Sierig et al., 2003). SLS may
interact synergistically with other virulence factors (e.g. M
protein and streptolysin O (SLO)) and host factors (e.g.
neutrophil proteases and reactive oxygen species) to induce
tissue necrosis and promote the development of necrotizing
fasciitis in humans (Humar et al., 2002).

Recently, SLS and SLO have been shown to induce
endoplasmic reticulum (ER) stress and an unfolded
protein response (UPR) in host cells to reduce the surplus
of unfolded proteins. The activation of UPR plays a key
role in cellular defences against bacterial pore-forming
toxins and is an important downstream target of the p38
mitogen-activated protein kinase pathway (Bischof et al.,
2008), a central pathway of cellular immunity. In a
mechanism that is yet to be fully understood, UPR results
in the transcriptional upregulation of asns, a gene
encoding for asparagine synthetase, and the release of
asparagine into the extracellular environment. The extra-
cellular asparagine sensed by GAS triggers a reduction in
SLS and SLO transcription and stimulates bacterial
growth (Baruch et al., 2014). Similarly, the pore-forming
toxin listeriolysin O (LLO) produced by Listeria
monocytogenes, a facultative intracellular bacterial path-
ogen, induces ER stress and is required for UPR
activation (Pillich et al., 2012). LLO is activated within
the acidic phagosome, allowing the bacterium to degrade
the phagosome and escape to the cytosol (Dramsi and
Cossart, 2002).

Groups C and G streptococci streptolysin S homologues

Group C Streptococcus (GCS) and GGS comprise several
species of streptococci, with the significant human
pathogen Streptococcus dysgalactiae ssp. equisimilis
responsible for throat, skin and soft tissue infections and
invasive infections including endocarditis, bacteremia and
toxic shock. Nine-gene SLS-like loci are present in GCS
and GGS. The SagA peptides of GCS and GGS share
89% amino acid identity with SagA from GAS (Humar
et al., 2002) and are responsible for the prototypical β-
haemolytic phenotype on the surface of blood agar plates
(Flanagan et al., 1998; Hashikawa et al., 2004). Heterol-
ogous expression of GAS SagA in a non-haemolytic sagA
mutant in GGS restored β-haemolytic activity on blood
agar (Humar et al., 2002).

Streptococcus iniae streptolysin S homologue

Streptococcus iniae is an emerging zoonotic pathogen
responsible for sporadic human infections through soft
tissue injuries suffered during the handling and prepara-
tion of infected fish (Weinstein et al., 1997; Koh et al.,
2009). The nine-gene S. iniae sag operon is 73%
homologous to the sag operon from GAS and shares
the same gene order (Fuller et al., 2002). Encoded by the
sagA gene, the cytolysin of S. iniae shares 73% identity

with GAS SLS (Fuller et al., 2002; Locke et al., 2007) and
lyses erythrocytes, neutrophils, lymphocytes and several
tissue culture cell lines. Heterologous expression of the S.
iniae sagA gene in a non-haemolytic ΔsagA mutant of
serotype M49 GAS restored haemolytic activity (Fuller
et al., 2002; Locke et al., 2007). S. iniae SLS promotes
neither adherence and invasion of epithelial cells nor
resistance to opsonophagocytosis (Locke et al., 2007).
However, a SagA-deficient mutant is highly attenuated for
virulence (Locke et al., 2007).

Intermedilysin

Streptococcus intermedius, Streptococcus constellatus
and Streptococcus anginosus are members of the
Anginosus group of streptococci (AGS) that colonize the
oral cavity, upper respiratory, gastrointestinal and female
genitourinary tracts (Whiley et al., 1992; Jacobs et al.,
1995). AGS are opportunist human pathogens capable of
causing liver and brain abscesses, dentoalveolar infec-
tions and endocarditis (Jacobs et al., 1995). The secreted
intermedilysin (ILY) of S. intermedius binds complement
receptor CD59 on human cells and forms cytotoxic pores,
but only in the presence of sufficient levels of cholesterol
(Nagamune et al., 1996; Farrand et al., 2008; Heuck et al.,
2010; Johnson et al., 2013). ILY damages host tissues
and immune cells to promote bacterial survival and
dissemination (Nagamune et al., 1996, 2000). ILY is
considered to be a major virulence factor required for
adherence to and invasion of human liver cells (Sukeno
et al., 2005).

Streptolysin O

The oxygen-sensitive, 57 kDa thiol-activated SLO exotox-
in is encoded by the highly conserved slo gene and
secreted by nearly all GAS isolates during exponential
and early stationary growth phases. SLO is a cholesterol-
dependent cytolysin that disrupts the cytoplasmic mem-
brane integrity of numerous eukaryotic cell types, includ-
ing erythrocytes, leukocytes, macrophages, platelets,
epithelial cells and various tissue culture cell lines
(Limbago et al., 2000; Sierig et al., 2003). SLO contributes
to GAS β-haemolysis under the surface of blood agar
medium and, in contrast to SLS, contributes negligibly to
β-haemolytic activity on the surface of blood agar (Molloy
et al., 2011). The slo gene is co-transcribed with the nga
gene encoding NAD-glycohydrolase (NADase), also
known as Streptococcus pyogenes NADase, which is
actively translocated into the cytosol of human epithelial
cells by SLO to deplete energy stores and promote host
cell injury (Madden et al., 2001; Bricker et al., 2005;
Michos et al., 2006). Cathelicidin antimicrobial peptide LL-
37 has been shown to upregulate the expression of slo
and hyaluronan capsule, which promotes GAS resistance
to killing by human epithelial cells, neutrophils and
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macrophages (Love et al., 2012). SLO blocks the clathrin-
dependent pathway for GAS internalization through
disruption of the keratinocyte cell surface (Logsdon
et al., 2011) and induces keratinocyte apoptosis through
the dysregulation of calcium signalling (Cywes Bentley
et al., 2005). SLO expression by intracellular GAS also
contributes to the inhibition of dendritic cell maturation by
inducing apoptosis (Cortes and Wessels, 2009). Upon
macrophage phagocytosis, SLO damages the
phagolysosome membrane, preventing phagolysosome
acidification and resulting in the translocation of NADase
into the macrophage cytosol (Bastiat-Sempe et al., 2014).
SLO and NADase also inhibit the autophagic killing of
GAS in pharyngeal keratinocytes (O’Seaghdha and
Wessels, 2013). The toxic effects of NADase are further
discussed below.
In subcutaneous, intravenous and intraperitoneal mu-

rine models of invasive disease, slo-deficient GAS
mutants have decreased virulence compared with WT
parental strains (Limbago et al., 2000; Ato et al., 2008;
Timmer et al., 2009). A recent study showed that SLO
binding to A549 epithelial cells does not require choles-
terol, suggesting that cholesterol is not the membrane
receptor for SLO (Mozola et al., 2014). In support of this
hypothesis, SLO binding to a glycan on the surface of
human erythrocytes is essential for pore formation
(Shewell et al., 2014), and the haemolytic activity of
SLO can be inhibited with a specific galactose-binding
lectin (Hasan et al., 2014). Similarly, an exposed F-type
lectin domain at the N-terminus of lectinolysin (LLY), a
cholesterol-dependent cytolysin from Streptococcus mitis,
promotes binding of LLY to fucose-rich sites on target cell
membranes (Farrand et al., 2008; Bouyain and
Geisbrecht, 2012). SLO and an enzymatically inactive
derivative are immunogenic and protective against GAS
challenge in mouse vaccination models (Bensi et al.,
2012; Chiarot et al., 2013).

Suilysin

Streptococcus suis is a pathogenof swine that is responsible
for numerous diseases (meningitis, septicaemia and endo-
carditis) and important economic losses to the porcine
industry worldwide (Fittipaldi et al., 2012). This species
is also an emerging zoonotic agent of meningitis and
streptococcal toxic shock-like syndrome in humans. S.
suis expresses the haemolysin suilysin (SLY), a
secreted 54 kDa thiol-activated exotoxin that binds
cholesterol and forms pores in eukaryotic cell mem-
branes (Gottschalk et al., 1995; Palmer, 2001). It is
closely related to both GAS SLO and the pneumolysin
(PLY) of Streptococcus pneumoniae and is cytotoxic to
endothelial cells, epithelial cells, macrophages and
neutrophils (Charland et al., 2000; Lalonde et al.,
2000; Segura and Gottschalk, 2002; Chabot-Roy et al.,

2006). SLY allows S. suis to evade the innate immune
response by interfering with the complement cascade
and activating phagocytic cells to release proinflamma-
tory cytokines (Lun et al., 2003; Segura et al., 2006).
SLY-deficient mutants are attenuated for virulence in a
systemic mouse infection model (Allen et al., 2001), but
SLY is not required for full virulence in a piglet infection
model (Lun et al., 2003). Recently, SLY has been
shown to promote S. suis adherence to and invasion of
human HEp-2 epithelial cells (Seitz et al., 2013).

β-Haemolysin/cytolysin

Streptococcus agalactiae (group B Streptococcus, GBS)
is the leading cause of meningitis, sepsis and pneumonia
in human newborn infants and a significant agent of
invasive infections among immunocompromised adults
(e.g. diabetes and cancer patients) and pregnant women
worldwide (Farley, 2001). The β-h/c of GBS is a non-
immunogenic oxygen-stable pore-forming cytolysin and a
major virulence factor expressed by most clinical isolates,
with a predicted size of 78.3 kDa (Dal and Monteil, 1983;
Nizet et al., 1996; Spellerberg, 2000). First described in
1934 (Todd, 1934), cell surface-associated β-h/c is
encoded by the cylE gene in the cyl locus, a unique
12-gene operon involved in fatty acid biosynthesis
(Pritzlaff et al., 2001) that is expressed by almost all
strains of GBS. CylE expression is invariably associated
with the production of an orange to brick-red carotenoid
pigment (Tapsall, 1987; Spellerberg et al., 2000) and is
primarily regulated by the two-component system covR/S
(control of virulence) (Tapsall, 1987); some have recently
suggested the pigment itself may convey the haemolytic
activity (Whidbey et al., 2013). CylE expression is required
for GBS survival in mouse and human blood ex vivo
(Liu et al., 2004). Animal studies with WT and isogenic
β-h/c mutants demonstrate that haemolysin expression
has proapoptotic, proinflammatory and cytotoxic effects
and is necessary for full GBS virulence in multiple in vivo
systems, including mouse models of GBS arthritis (Puliti
et al., 2000), meningitis (Doran et al., 2003) and
ascending chorioamnionitis (Randis et al., 2014), a rat
model of experimental GBS meningitis (Reiss et al.,
2011), and rabbit models of GBS septicaemia (Ring et al.,
2002) and pneumonia (Hensler et al., 2005).

Pneumolysin

Streptococcus pneumoniae (pneumococcus) is the caus-
ative agent of pneumococcal pneumonia, meningitis,
sepsis, otitis media and other less serious infections.
PLY is a 53 kDa (471-amino-acid) (Walker et al., 1987)
cholesterol-dependent pore-forming toxin with four func-
tional domains (Mitchell and Dalziel, 2014). In a recent
study, binding of PLY domain 4 to the sialyl LewisX
glycolipid cellular receptor on the surface of human
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erythrocytes was shown to be an essential step before
membrane insertion and pore formation (Shewell et al.,
2014). PLY is a cytoplasmic thiol-activated toxin with
cytolytic and complement-activating properties (Lucas
et al., 2013). PLY is localized primarily to the cell wall
compartment in the absence of detectable cell lysis (Price
et al., 2012). However, unlike other cholesterol-binding
cytolysins, PLY lacks secretion signal sequences and is
not actively secreted into the extracellular milieu (Cassidy
and O’Riordan, 2013). The cytolytic activity of PLY and its
release into the extracellular milieu are inhibited by
branched stem peptides in the peptidoglycan cell wall
(Greene et al., 2015). PLY is released into the alveolar
compartment upon bacterial lysis induced by autolysis
(Berry et al., 1989a, 1992) or by antibiotic treatment of
pneumococcal pneumonia patients (Anderson et al.,
2007). However, in the absence of cell lysis, PLY is
exported from the cytoplasm and attached to the cell wall
by a yet-to-be-characterized mechanism (Price et al.,
2012). PLY is directly toxic for a wide variety of host cells
and tissues and also elicits strong inflammatory responses
at the site of infection, triggering signalling via TLR4
(Malley et al., 2003), as well as activation of the NLRP3
inflammasome (McNeela et al., 2010). Circulating PLY
also induces myocardial injury in a mouse model of
invasive pneumococcal disease and dose-dependent
damage to cardiomyocytes in vitro (Alhamdi et al.,
2015). In pneumococcal meningitis, the majority of the
damage to the blood–brain barrier has been attributed to
PLY (Zysk et al., 2001; Mitchell and Dalziel, 2014).
Structural homology to the Fc region of immunoglobulin
G (IgG) also allows PLY to activate the classical
complement pathway away from intact bacteria to deplete
host serum complement levels and promote survival and
spread (Paton et al., 1984; Mitchell et al., 1991; Rossjohn
et al., 1998; Alcantara et al., 2001). Recently, PLY was
also shown to contribute to the assembly of pneumococ-
cal biofilms (Shak et al., 2013). PLY activates p38 in vitro
(Ratner et al., 2006) and the NLRP3 inflammasome in
macrophages to stimulate the production of type I
interferons following pneumococcal phagocytosis (Koppe
et al., 2012). In murine infection models, PLY-deficient
mutants have reduced proliferation in whole blood (Benton
et al., 1995), diminished capacity to colonize the naso-
pharynx, induce less lung inflammation and neutrophil
recruitment and are rapidly cleared from the lung,
compared with WT (Berry et al., 1989b; Kadioglu et al.,
2000). Genetically inactivated PLY toxoids are immuno-
genic and protective against lethal pneumococcal chal-
lenge in mouse vaccination models (Paton et al., 1991;
Alexander et al., 1994; Kirkham et al., 2006). Phase I
clinical trials demonstrated that PLY toxoid PlyD1 is safe
and elicits functional neutralizing antibodies against the
pneumococcus (Kamtchoua et al., 2013).

Proteases

Proteases (or peptidases) are enzymes that catalyse the
hydrolysis of peptide bonds. The genus Streptococcus
possesses a wide array of proteases that have diverse
functions, including nutrient acquisition, protein maturation
and quality control, and various host interactions. For the
purposes of this review, however, we will focus only on
those surface-exposed or secreted proteases that have
direct effects on pathogenesis through their activities on
host proteins and tissues.

Group A Streptococcus cysteine protease (SpeB)

The GAS cysteine protease SpeB is encoded in the
genomes of essentially all GAS strains (Bohach et al.,
1988; Yu and Ferretti, 1991); homologous proteins, albeit
uncharacterized, are encoded in the genomes of the
closely related species Streptococcus didelphis, Strepto-
coccus porcinus and Streptococcus pseudoporcinus.
Expression of this protein is tightly regulated at the
transcriptional level, as well as post-transcriptionally
through the maturation of the inactive zymogen to the
active mature enzyme (for a review, see Carroll and
Musser, 2011). With diverse functions in pathogenesis,
including direct action on host tissues as well as roles in
the maturation and surface display of other surface-
exposed GAS proteins, SpeB is a veritable ‘Swiss army
knife’ of GAS biology.

SpeB is a broad-spectrum cysteine protease structurally
related to papain and has been shown to degrade
numerous host proteins in vitro, including immunoglobu-
lins, complement components, chemokines, cytokines,
extracellular matrix proteins and numerous other host
proteins (for a review, see Nelson et al., 2011). However,
despite these studies, it has recently been shown that
SpeB does not cleave immunoglobulins under physiolog-
ically relevant conditions (Persson et al., 2013), and thus,
the true in vivo substrate profile might be considerably
smaller. Multiple lines of evidence suggest that SpeB is
important for GAS pathogenesis: passive immunization of
mice with anti-SpeB antibodies or a synthetic protease
inhibitor protects against infection, and low-milligram
amounts of SpeB are lethal when injected into mice
(Bjorck et al., 1989; Kapur et al., 1994; Nelson et al.,
2011). Furthermore, isogenic ΔspeB mutant GAS strains
are avirulent in mice following subcutaneous (Lukomski
et al., 1999; Cole et al., 2006; Terao et al., 2008) and
intraperitoneal (Lukomski et al., 1997; Hollands et al.,
2008) infection and exhibit decreased survival in human
whole blood (Chiang-Ni et al., 2006) and serum (Honda-
Ogawa et al., 2013).

Role in superficial infections. SpeB expression has a
strong epidemiological association with isolates from
superficial disease (Ikebe et al., 2010; Cole et al., 2011).
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While the exact role of this enzyme during superficial GAS
disease was presumed to involve its degradation of host
immune components, two recent reports have suggested
alternative or complementary functions. In the first report
(Barnett et al., 2013), SpeB conferred the ability of GAS
strains to replicate in the cytosol of infected epithelial cells.
SpeB was shown to degrade the host proteins that direct
intracellular bacteria to the autophagy pathway, a host
system for degrading cytosolic components in lysosomes
that constitutes an important immune defence against
intracellular bacteria. Consequently, SpeB-expressing
GAS strains are able to evade this pathway and replicate
in the cytosol of infected cells. In a separate study, SpeB
was shown to promote the translocation of GAS across
epithelial barriers by degrading occludin and E-cadherin
(Sumitomo et al., 2013). Thus, SpeB may aid in the
establishment of an epithelial replicative niche and
dissemination of GAS into deeper tissues.

Role in invasive disease. Epidemiological studies have
demonstrated that SpeB expression is inversely related to
disease severity (Kansal et al., 2000; Ikebe et al., 2010).
Loss of SpeB expression, through the accumulation of
mutations in the regulatory genes covR/S and to a lesser
extent ropB, leads to the abolishment of speB expression.
This genetic switch has multiple consequences that lead
to a hypervirulent invasive state: loss of SpeB production
spares several GAS virulence factors (e.g. M protein,
various SAgs and streptokinase) from proteolytic degra-
dation, and covR/S mutations lead to the up-regulation of
multiple virulence factors required for the invasive disease
phenotype (for a review, see Cole et al., 2011).
While SpeB expression is strongly linked to GAS

isolates from superficial disease, immunohistochemical
analysis has shown that human tissues from necrotizing
fasciitis cases are strongly positive for SpeB, suggesting
that SpeB is elaborated during the establishment or
progression of this disease (Johansson et al., 2008).
Similarly, SpeB is required for full virulence in invasive
infection models in mice (Lukomski et al., 1999; Cole
et al., 2006; Hollands et al., 2008; Olsen et al., 2010) and
nonhuman primate animal models (Olsen et al., 2010).
While these results seemingly contradict other studies that
have clearly demonstrated a genetic switch from a SpeB-
positive phenotype to a SpeB-negative phenotype during
invasive disease (Aziz et al., 2004; Cole et al., 2006;
Sumby et al., 2006; Walker et al., 2007), it is possible that
a mixed population of SpeB-positive and SpeB-negative
bacteria contribute to the overall pathology of GAS
invasive disease and penetration into deeper tissues
(Cole et al., 2006).
In addition to regulation through covR/S and ropB

mutations, it has also been recently demonstrated that
SpeB activity can be inhibited by the divalent cations of

zinc and copper (Chella Krishnan et al., 2014). While the
physiological consequence of this inhibition is currently
unknown, it was postulated that reversible inhibition of
SpeB activity may reversibly preserve critical virulence
factors required during certain stages of the infectious
process.

Immune-modulating proteases

C5a peptidase. C5a peptidase (ScpA), is a serine
endopeptidase that specifically cleaves and inactivates
the C5a complement factor and has been implicated to
play a role in inhibiting the recruitment of phagocytes to
the infectious site (Ji et al., 1996; Collin and Olsen, 2003).
While recombinant ScpA is very potent in inhibiting
phagocyte chemotaxis in vitro, the effects of ΔscpA
mutations in mice infections in vivo are much less
dramatic (Ji et al., 1996), possibly as a result of alternative
chemoattractants, such as interleukin (IL)-8, and GAS
proteases that inhibit them, such as SpyCEP (below). C5a
peptidase is a cell wall-anchored enzyme but can be
released from the surface of GAS as a functionally active
enzyme by SpeB and can thus inactivate C5a at some
distance from the bacterium (Berge and Bjorck, 1995).
C5a peptidase is expressed by strains of GAS (ScpA;
Chen and Cleary, 1990), GBS (ScpB; Cleary et al., 1992)
and Streptococcus equi ssp. zooepidemicus (ScpZ; Wei
et al., 2013) and is encoded in the genomes of several
other streptococcal pathogens, including S. dysgalactiae,
S. iniae, Streptococcus sanguinis, S.mitis and Strepto-
coccus canis (GGS). In addition to its endopeptidase
activity, the C5a peptidase proteins from GAS, GBS and
S. equi ssp. zooepidemicus have also been suggested to
function as an invasin (Cheng et al. , 2002b;
Purushothaman et al., 2004; Wei et al., 2013). Vaccination
against ScpA is protective for GAS (Park and Cleary,
2005), GBS (Cheng et al., 2002a; Santillan et al., 2008)
and S. equi ssp. zooepidemicus (Wei et al., 2013).

SpyCEP. Group A Streptococcus SpyCEP is a subtilisin-
like serine protease that can cleave human CXC
chemokines. In its mature form, SpyCEP exists as a
dimer composed of two subunits (30 and 150 kDa)
generated by intramolecular autocatalytic cleavage
(Zingaretti et al., 2010). Substrates include granulocyte
chemotactic peptide-2 (CXCL6), growth-related
oncogene-α, β, γ (CXCL1, 2, 3), neutrophil-activating
peptide-78 (CXCL5), GRB2-related adapter protein 2
and IL-8 (CXCL8), which correspond to the murine CXC
chemokines MIP-2 and KC (Hidalgo-Grass et al., 2004;
Sumby et al., 2008; Chiappini et al., 2012). As a result of
this activity, SpyCEP impairs the recruitment of neutro-
phils, monocytes and eosinophils to the site of infection
(Zinkernagel et al., 2008; Chiappini et al., 2012). SpyCEP
also promotes resistance to neutrophil killing by reducing
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the production of neutrophil extracellular traps (Zinkerna-
gel et al., 2008). SpyCEP-producing GAS strains are more
virulent in murine models of invasive disease, and
SpyCEP production is up-regulated in human invasive
GAS isolates (Edwards et al., 2005; Hidalgo-Grass et al.,
2006; Zinkernagel et al., 2008; Turner et al., 2009a).
Furthermore, immunization with SpyCEP protects mice
against GAS nasopharyngeal (Alam et al., 2013), intra-
muscular and intranasal infection (Turner et al., 2009b)
and intramuscular infection with S. equi (Turner et al.,
2009b), demonstrating that a vaccine based on SpyCEP
may provide cross-protection against multiple streptococ-
cal species. While SpyCEP is cell wall anchored, it can be
shed into the supernatants of bacterial cultures during
stationary-phase growth (Chiappini et al., 2012), presum-
ably as a result of protease processing. In addition to
these protease activities, SpyCEP also promotes the
uptake of GAS into endothelial, but not epithelial, cells
(Kaur et al., 2010). Homologous proteases have also been
characterized in S. iniae (Zinkernagel et al., 2008) and S.
equi (Turner et al., 2009b) and are present in the genomes
of several other Streptococcus species (S. dysgalactiae,
S. canis, S. didelphis, Streptococcus phocae, S. porcinus,
S. pseudoporcinus and Streptococcus thermophilus).

IdeS. IdeS (also known as Mac) is a 35 kDa secreted
cysteine protease produced by strains of GAS that
specifically cleaves between the two glycine residues in
positions 236 and 237 in the lower hinge region of the IgG
heavy chain, resulting in the separation of the Fc and Fab
fragments (von Pawel-Rammingen et al., 2002; Vincents
et al., 2004; von Pawel-Rammingen, 2012). As a
homologue of CD11b, IdeS has been proposed to also
inhibit phagocytosis by inhibiting Fc receptor (CD16)
recognition of IgG and/or complement deposition (Lei
et al., 2001). This is hypothesized to prevent the
recognition of antibody-opsonized bacteria by Fc recep-
tors of immune cells and by the complement system (von
Pawel-Rammingen et al., 2002). Protease activity is
considerably higher against soluble IgG and IgG bound
in an antigen-specific manner at the Fab region than to
IgG bound non-specifically to GAS M protein at the Fc
region, suggesting that this enzyme has evolved to allow
GAS to resist Ig-mediated phagocytosis and cytotoxicity
while still allowing non-immune IgG interactions, which are
believed to contribute to GAS pathogenesis (Su et al.,
2011). However, IdeS was recently found to not be
essential for phagocyte resistance or mouse virulence,
and thus, the exact role of this protein in human disease
remains to be identified (Okumura et al., 2013). The
human protease inhibitor cystatin C can act as a cofactor
for IdeS and greatly increase enzymatic activity (Vincents
et al., 2008). All GAS strains examined possess one of
two identified variants of IdeS (IdeS and Mac-2), with

considerable amino acid sequence divergence in the
middle third of the proteins but with indistinguishable
enzymatic activity, with the exception of the Mac-2 protein
from M28 strains that displays only weak endopeptidase
activity (Lei et al., 2001; von Pawel-Rammingen et al.,
2002; Soderberg et al., 2008; von Pawel-Rammingen,
2012). IdeS homologues that cleave IgG have also been
identified in several other Streptococcus species, includ-
ing S. equi ssp. equi and S. equi ssp. zooepidemicus
(Lannergard and Guss, 2006; Hulting et al., 2009).
Additionally, an IdeS homologue that cleaves porcine
IgM has recently been found in S. suis (Seele et al., 2013).

Zinc metalloproteases

Streptococcus pneumoniae strains encode various com-
binations of four zinc metalloproteases: IgA1 protease,
ZmpB, ZmpC and ZmpD. An unusual characteristic of all
of these proteins is the presence of an LPXTG cell wall-
anchoring motif near their N-terminus (Bek-Thomsen
et al., 2012), which in the case of IgA1 protease has
been shown to be important for proper localization and
enzymatic function (Bender and Weiser, 2006).

IgA1 protease specifically cleaves the IgA1 hinge region,
resulting in separation of the Fc and Fab fragments (Senior
and Woof, 2005a,b). This cleavage abrogates the protec-
tive effects of IgA1 in mediating complement-dependent
killing of pneumococci by phagocytes (Fasching et al.,
2007; Janoff et al., 2014) and promotes the adherence of
this bacterium to respiratory epithelial cells (Weiser et al.,
2003). It is likely that IgA1 protease has additional roles in
virulence, as mutants have reduced virulence in mice yet
murine IgA1 is not a substrate for this enzyme (Chiavolini
et al., 2003; Janoff et al., 2014). Homologous IgA1
proteases have been characterized in S. suis, which is
important for virulence in pigs (Zhang et al., 2011), and S.
sanguinis (Gilbert et al., 1988). IgA1 protease is encoded
by all strains of S. pneumoniae, Streptococcus
pseudopneumoniae, Streptococcus oralis and S.
sanguinis and is variably present in S.mitis and Strepto-
coccus infantis (Bek-Thomsen et al., 2012).

In contrast to IgA1 protease, the ZmpC protease has
multiple targets and is an important virulence factor in
experimental pneumonia (Oggioni et al., 2003). ZmpC has
been shown to activate human matrix metalloprotease 9, a
host zinc protease involved in neutrophil migration and
wound repair of the respiratory epithelium (Oggioni et al.,
2003). ZmpC inhibits neutrophil flux by degrading the N-
terminal region of P-selectin glycoprotein 1 (Surewaard
et al., 2013). In addition, ZmpC induces specific epithelial
cell shedding of both mucin 16, a vital defence barrier of
ocular epithelial cells (Govindarajan et al., 2012; Menon
and Govindarajan, 2013), and syndecan-1, a surface
proteoglycan with diverse roles in cell–cell and cell–matrix
binding, cell signalling and cytoskeletal organization
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(Chen et al., 2007). Genes encoding ZmpC are variably
present in S. pneumoniae, S. pseudopneumoniae, S.mitis,
S. oralis and Streptococcus gordonii and present in all
strains of S. sanguinis (Bek-Thomsen et al., 2012).
In contrast to IgA1 protease and ZmpC, ZmpB and

ZmpD have not been well characterized, and their
substrates have not been identified. ZmpB induces tumour
necrosis factor-α production in the respiratory tract, and a
zmpB mutant was attenuated in pneumonia and
septicaemia models of infection (Blue et al., 2003;
Chiavolini et al., 2003). Genes encoding ZmpB are present
in all S. pneumoniae strains as well as several other
Streptococcus species, including S. pseudopneumoniae,
S.mitis, S. oralis, S. sanguinis, S. gordonii, Streptococcus
vestibularis and Streptococcus salivarius. Genes
encoding ZmpD are sporadically distributed among S.
pneumoniae, S. pseudopneumoniae and S.mitis (Bek-
Thomsen et al., 2012).

SspA

Strains of S. suis encode a cell wall-anchored subtilisin-
like serine protease termed SspA, which is important for
disease in pigs (Bonifait et al., 2010; Hu et al., 2010).
SspA cleaves fibrinogen, preventing subsequent fibrin
formation by thrombin. Purified SspA protease is toxic
when added to brain microvascular endothelial cells
(Bonifait et al., 2011b) and induces a proinflammatory
response in macrophages through a non-proteolytic
mechanism (Bonifait and Grenier, 2011a). Homologous
genes are present in the genomes of several other
Streptococcus species, including S. thermophilus, S.

canis, S. agalactiae, S. dysgalactiae, S. gordonii, S.mitis,
S. sanguinis and S. intermedius.

Superantigens

Bacterial superantigens (SAgs) are potent microbial
secreted toxins produced by GAS, group C/G S.
dysgalactiae ssp. equisimilis, Staphylococcus aureus,
Yersinia pseudotuberculosis and Mycoplasma arthritidis
(Fraser and Proft, 2008). Their importance in disease
pathogenesis resides in their ability to bypass the regular
antigen presentation process and overstimulate immune
activation. Conventional antigen presentation by antigen-
presenting cells (APCs) to T cells is mediated by the
interaction of the major histocompatibility complex (MHC)
molecules and the T-cell receptor (TCR). TCRs are
formed by five variable elements (Vβ, Dβ, Jβ, Vα and
Jα), which are responsible for a highly specific immune
response to a vast number of foreign antigens. All five
variable elements from the TCR are needed to recognize
the complex formed by the MHC and the processed
antigen in order to stimulate T-cell proliferation (Fig. 1). As
a result of this specificity, conventional processed
antigens are only able to stimulate approximately 0.01%
of the T-cell repertoire (Davis and Bjorkman, 1988).
Conversely, unprocessed SAgs bind directly to the MHC
II molecules on the surface of APCs and to the Vβ variable
region of the TCR, which is present in up to 25% of the T-
cell population (Fig. 1). When this simultaneous binding
occurs, stimulated T cells and APCs secrete a vast
amount of proinflammatory cytokines such as IL-2,

Fig. 1. A. T-cell stimulation mediated by
conventional major histocompatibility
complex (MHC) II antigen presentation,
where large antigens are processed by
antigen-presenting cells (APCs) into linear
epitopes and presented by MHC II; specific
recognition of the MHC–antigen complex by
T-cell receptor (TCR) on the surface of T
cells has to occur in order to trigger
production of inflammatory cytokines.
B. Superantigen direct binding to MHC II and
TCR, where binding occurs in a less specific
manner, thus stimulating a significantly
higher number of T cells and producing an
uncontrollable cytokine release.
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interferon-γ and tumour necrosis factor-α (Jupin et al.,
1988; Fast et al., 1989; Müller-Alouf et al., 1996). This
uncontrollable cytokine release is then thought to be
responsible for the characteristic manifestations of strep-
tococcal toxic shock syndrome (STSS), such as systemic
vasodilatation, hypotension and multi-organ failure
(Lappin and Ferguson, 2009). In addition, recent pub-
lished data suggest that for some SAgs, binding to the
CD28 receptor on the surface of T cells is required for the
expression of Th1 cytokines (Arad et al., 2011). It has
been hypothesized that SAgs dysregulate the host
immune response and therefore increase the chance of
pathogen survival (Spaulding et al., 2013). In the case of
GAS, an outside–in signalling mechanism has been
proposed to explain the ability of GAS to trigger STSS
from mucosal surfaces, where SAgs together with SLO act
synergistically to penetrate the mucosal epithelium, recruit
lymphocytes to the site of infection and initiate SAg
stimulation of T cells (Fig. 2) (Brosnahan, 2009;
Brosnahan and Schlievert 2011). Additional new evidence
suggests that SAgs provide an advantage for nasopha-
ryngeal colonization in a humanized mouse model
(Kasper et al., 2014).

Structure of superantigens

Since their discovery in GAS in 1924, numerous strepto-
coccal SAgs have been identified, particularly since the
expansion of whole-genome sequencing technologies. In

total, 91 unique sequences encoding complete strepto-
coccal SAgs have been reported and a uniform nomen-
clature proposed (Commons et al., 2014), which has been
used in this review (Table 2).

Superantigens are small non-glycosylated proteins be-
tween 22 and 29kDa. Despite low DNA sequence homology,
they share a common two-domain architecture formed by the
N-terminal andC-terminal domains, which are separated by a
long accessible α-helix. Hydrophobic residues in solvent-
exposed regions characterize the N-terminal domain, while a
four-stranded β-sheet capped by a central α-helix constitutes
the C-terminal domain. Most of the streptococcal SAgs
contain a zinc binding site in the C-terminal domain, and the
presence of zinc has been shown to be critical for MHC II
binding (Proft et al., 1999). In addition, the majority of
streptococcal SAgs bind to the β-chain of MHC II with the
exception of SpeA and SSA, which bind to the α-chain. The
TCRbindingsite is located ina shallowcavity between the two
protein domains, and different SAgs show preference for
different TCR Vβ chains (Table 2) (Papageorgiou and
Acharya, 1997; Proft and Fraser, 2007). Some streptococcal
SAgs (SSA, SpeA, SpeI, SpeH and SmeZ) contain a CD28
binding motif situated in the SAg β-strand/hinge/α-helix
domain (Arad et al., 2011; Commons et al., 2014).

Evolution and genetic mobility of superantigen genes

Most of the streptococcal SAgs are located on prophage
regions within the genome. Only speG, speJ and smeZ,

Fig. 2. Outside–in mechanism proposed by Brosnahan and Schlievert (2011), where streptolysin O (SLO) and SpeA act synergistically to cause
streptococcal toxic shock syndrome (STSS) from a mucosal surface. SLO produces damage to epithelial cells allowing SpeA to access the
submucosa. SpeA in turn stimulates epithelial cells to secrete chemokines that recruit lymphocytes to the site of infection where they are targets for
superantigen (SAg) stimulation. Secretion of Th1 cytokines by SAg-stimulated T cells and antigen-presenting cells (APCs) skews the host’s immune
response, interfering with its ability to effectively combat infection. The uncontrolled release of proinflammatory cytokines can then cause vascular
leakage and fever leading to STSS.
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which are usually flanked by transposon-like elements,
are located within the main chromosome external to
prophages. The hypothesis that SAg genes can be
horizontally transferred through phages was validated by
performing in vitro and in vivo lysogenic transfer of speC
between two different GAS isolates (Broudy and Fischetti,
2003). Moreover, lysogenic transfer of phage-carrying
toxins between different streptococcal species has also
been reproduced in vitro (Vojtek et al., 2008). Despite the
fact that horizontal transfer of SAg genes has been
demonstrated, little is known about the evolution of these

genes within streptococcal species. A multi-step model for
the evolution of SAgs was proposed based on genome
sequence analysis of GAS, S. dysgalactiae ssp. equisimilis
and S.aureus. In step 1, ancestral bacteria acquired the
ancestors of streptococcal SAgs, staphylococcal entero-
toxins and staphylococcal SAg-like proteins (SSLs). In step
2, ancestral smeZ was likely to be deleted from the S.
dysgalactiae ssp. equisimilis genome soon after the
speciation of GAS and S. dysgalactiae ssp. equisimilis. In
step 3, ancestral SAgs and SSLs were potentially incorpo-
rated into phages that were then transferred in between

Table 2. Streptococcal superantigens.

Superantigen
Streptococcal
species

Major histocompatibility
complex II binding α/β

T-cell receptor
Vβ specificity

Clinical
association References

SpeA Streptococcus
pyogenes

+/! 2.1,12.2, 14.1, 15.1 Scarlet fever (Eriksson et al., 1999;
Hartwig et al., 1994;

Streptococcus dysgalactiae
ssp. equisimilis

Streptococcal toxic
shock syndrome

Musser et al., 1991;
Silva-Costa et al., 2014)

SpeC S. pyogenes !/+ 2.1, 3.2, 12.5, 15.1 Scarlet fever (Li et al., 1997;
S. dysgalactiae
ssp. equisimilis

Kawasaki Disease Silva-Costa et al., 2014;
Davies et al., 2015;

S. dysgalactiae
ssp. dysgalactiae

Yoshioka et al., 2003)

SpeG S. pyogenes !/+ 2.1, 4.1, 6.9, 9.1, 12.3 ND (Proft et al., 1999;
S. dysgalactiae
ssp. equisimilis

Sachse et al., 2002)

S. dysgalactiae
ssp. dysgalactiae
Streptococcus minor
Streptococcus canis

SpeH S. pyogenes !/+ 2.1, 4.1, 6.9, 9.1, 12.3 ND (Proft et al., 1999)
S. dysgalactiae
ssp. equisimilis
Streptococcus equi
ssp. equi

SpeI S. pyogenes !/+ 6.9, 9.1, 18.1, 22 ND (Proft et al., 2001)
S. equi ssp. equi

SpeJ S. pyogenes !/+ 2.1 ND (Proft et al., 2001;
McCormick et al., 2001)

SpeK S. pyogenes !/+ 1, 5.1, 23 Acute rheumatic
fever

(Beres et al., 2002;
S. dysgalactiae
ssp. equisimilis

Proft et al., 2003b)

S. equi ssp. equi
S. equi ssp. zooepidemicus

SpeL S. pyogenes !/+ 1, 5.1, 23 Acute rheumatic
fever

(Smoot et al., 2002)
S. dysgalactiae
ssp. equisimilis
S. equi ssp. equi

SpeM S. pyogenes ND 1, 23 Acute rheumatic
fever

(Smoot et al., 2002;
S. dysgalactiae
ssp. dysgalactiae

Miyoshi-Akiyama
et al., 2003)

SpeN S. equi ssp. zooepidemicus ND ND ND (Paillot et al., 2010)
SpeO S. equi ssp. zooepidemicus ND ND ND (Paillot et al., 2010)
SpeP S. equi ssp. zooepidemicus ND ND ND (Paillot et al., 2010)
SSA S. pyogenes +/! 1, 3, 15 Scarlet fever (Mollick et al., 1993;

Igwe et al., 2003;
S. dysgalactiae
ssp. equisimilis

Streptococcal toxic
shock syndrome

Silva-Costa et al., 2014;
Davies et al., 2015)

SmeZ S. pyogenes !/+ 2.1, 4.1, 7.3, 8.1 Streptococcal toxic
shock syndrome

(Kamezawa et al., 1997;
Igwe et al., 2003;

S. canis Proft et al., 2003a;
Vlaminckx et al., 2003)

ND, not determined.
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bacterial strains. In the final step, staphylococcal SAgs
(potential ancestors of streptococcal SAgs such as SSA and
SpeA) were then horizontally transferred to Streptococcus
bacteria (Okumura et al., 2012).

Streptococcal superantigens and disease correlation

Clinical manifestations of disease have been linked to the
presence of SAgs in streptococcal pathogens. Cases of
scarlet fever have been correlated with the carriage or
acquisition of ssa, speA and speC in different studies
(Silva-Costa et al., 2014; Davies et al., 2015). Additionally,
speA and ssa, together with speK, and smeZ have been
associated with invasive disease and STSS (Eriksson
et al., 1999; Chatellier et al., 2000; Beres et al., 2002;
Ikebe et al., 2002). A strong correlation has been
observed between M18 isolates expressing speL and
speM and acute rheumatic fever (Smoot et al., 2002). M89
isolates harbouring the speK gene have also been
associated with acute rheumatic fever (Proft et al., 2003b).

A controversial correlation between speC and Kawasaki
disease, a sporadic childhood inflammatory arthritis that
can affect the coronary vessels (Shulman and Rowley,
2015), has been proposed (Abe et al., 1992; Curtis et al.,
1995); however, contradicting epidemiological studies
render a direct correlation questionable (Yoshioka et al.,
2003). Research on the causative agents of Kawasaki
disease is still ongoing. In addition, speC has also been
correlated to psoriasis in susceptible individuals (Leung
et al., 1993; Lewis et al., 1993); however, the evidence is
not strong enough for a direct correlation, and the role of
SAgs in disease manifestations remains unclear (Travers
et al., 1999; Thomssen et al., 2000).

Other Toxins

In addition to producing toxic SAgs, haemolysins and
proteases, streptococcal species produce a number of
other toxins including proteins, enzymes and polysaccha-
rides such as Christie Atkins Munch-Petersen (CAMP)
factor, GBS toxin, adenosine diphosphate (ADP)-
ribosyltransferase and NADase.

Christie Atkins Munch-Petersen factor

The CAMP reaction was initially described as the lysis of
erythrocytes during a synergistic interaction of CAMP
factor produced by GBS with the β-toxin of S. aureus
(Christie et al., 1944). Historically, this reaction has been
used for the clinical identification of GBS. The CAMP
factor is best characterized in GBS, where the toxin is
encoded by the cfb gene (Podbielski et al., 1994). Other
streptococcal species, including groups A, B, C, G, M, P,
R and U, have also been reported to produce CAMP
factor; and in GAS, CAMP factor is encoded by the cfa
gene (Gase et al., 1999). The CAMP factor of GBS binds

glycophosphatidylinositol-anchored proteins (Lang et al.,
2007) and subsequently functions as a pore-forming toxin,
likely requiring self-oligomerization for activity (Lang and
Palmer, 2003). Previously, GBS CAMP factor was called
protein B, following reports that it could bind the Fc region
of IgG and IgM from several mammalian species (Jurgens
et al., 1987). However, more recent studies could not
detect a non-immune binding association between CAMP
factor and human IgG, leading to the suggestion that the
name protein B may be inappropriate (El-Huneidi et al.,
2007). CAMP factor of GBS was determined to be non-
pathogenic following administration to mice (Jurgens
et al., 1987). Furthermore, CAMP factor was not essential
for systemic virulence of GBS (Hensler et al., 2008),
suggesting that CAMP factor (in the absence of S. aureus
β-toxin) does not play a direct role in GBS pathogenesis.
Recent investigations have uncovered a novel CAMP
factor in GBS, designated CAMP factor II, that has been
proposed to have spread to other streptococci (Strepto-
coccus uberis, S. dysgalactiae, S. dysgalactiae ssp.
equisimilis and Streptococcus bovis) via integrative and
conjugative elements (Chuzeville et al., 2012).

Group B Streptococcus toxin (CM101)

Group B Streptococcus toxin, also designated CM101, is
a polysaccharide exotoxin that binds to embryonic
receptors expressed in the developing lung of the
neonate, resulting in a strong inflammatory response
(Wamil et al., 1997). GBS toxin also binds to tumour
neovasculature in adults and for this reason has been
evaluated as an anti-cancer therapeutic. In a phase I
clinical trial administering GBS toxin as an anti-
neovascularization agent in human cancer therapy (Har-
ris, 1997), 5/15 patients exhibited tumour reduction or
stabilization, and sera from all patients had elevated
soluble E-selectin, indicative of tumour neovasculature
endothelial engagement in an inflammatory process
(Wamil et al., 1997). Historically, GBS toxin was purified
from culture media of GBS isolates from neonates who
had died because of GBS infection. GBS toxin has also
been identified in plasma, urine and cerebrospinal fluid
from infants with GBS disease and could be used as an
additional tool to diagnose GBS infection in infants, which
can sometimes prove difficult to diagnose (Sundell et al.,
2000).

Adenosine diphosphate-ribosyltransferase (SpyA)

Adenosine diphosphate-ribosyltransferases covalently
transfer ADP-ribose from NAD+ to eukaryotic proteins.
SpyA is a surface-exposed membrane protein of GAS that
has been described as a C3-like ADP-ribosyltransferase
(Korotkova et al., 2012). SpyA has been documented to
modify cytoskeletal proteins including vimentin, tropomy-
osin and actin, and when expressed in HeLa cells
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following transfection, SpyAactivity resulted in a loss of actin
microfilaments (Coye and Collins, 2004) and inhibited
vimentin polymerization, resulting in the collapse of the
vimentin cytoskeleton (Icenogle et al., 2012). In a mouse
subcutaneous infection model, the ΔspyAmutant generated
smaller lesions and had higher levels of mRNA encoding
CXCL1 and CCL2 (both neutrophil and macrophage
chemoattractants) and vimentin, compared with WT (Hoff
et al., 2011). Vimentin plays many roles in the cell including
the organization of cellular architecture (Ivaska et al., 2007),
and the loss of vimentin functionality can impair wound
healing (Eckes et al., 2000). The findings of Hoff et al (2011)
suggest that SpyA delays wound healing in the subcutane-
ous infectionmodel. In amouse intravenous infectionmodel,
the ΔspyA mutant caused higher mortality with impaired
bacterial clearance, and in vivo, the mutant was resistant to
killing by macrophages (Lin et al., 2015). Lin and colleagues
determined that SpyA triggers pyroptosis, a caspase-1-
dependent inflammasome in macrophages, resulting in
macrophage cell death and the release of proinflammatory
cytokine IL-1β. This innate defence programme triggered in
response to SpyA dramatically enhances clearance of GAS
and restricts bacterial growth, attenuating disease progres-
sion.

NAD-glycohydrolase (Streptococcus pyogenes NADase
or NADase)

NAD-glycohydrolase (also known as S. pyogenes NADase
or Nga) is encoded by the nga gene, which is found in the
sameoperon as slo. SLOandNADase act synergistically to
trigger cytotoxicity. NADase is translocated through pores
created by SLO and delivered into the host cell cytoplasmic
compartment by a process termed cytolysin-mediated
translocation (Madden et al., 2001). NADase possesses
both ADP-ribosyl cyclase activity and cADPR hydrolase
activity (Karasawa et al., 1995), and once inside the cell,
NADase produces the potent second messenger cyclic
ADP-ribose. Cytotoxicity mediated by the enzymatic action
of NADase may be a consequence of the depletion of host
cell energy stores (e.g. intracellular NAD+) (Michos et al.,
2006). NADase has been shown to act within human
pharyngeal keratinocytes, resulting in enhanced cell
membrane injury, inhibition of bacterial internalization and
induction of apoptosis (Bricker et al., 2002). SLO stimulates
xenophagy in these cells, and the co-expression of SLO
and NADase results in prolonged intracellular survival of
GAS and prevents maturation of GAS-containing
autophagosomes (O’Seaghdha and Wessels, 2013). In
addition, SLO and NADase mediate GAS intracellular
survival and cytotoxicity within macrophages, subsequent-
ly enabl ing persistent infect ion by preventing
phagolysosome acidification (Bastiat-Sempe et al., 2014).
Recent studies have identified NADase-inactive variants
that have emerged with polymorphism at multiple residues

(Chandrasekaran et al., 2013). This analysis revealed an
NADase-independent cytotoxic activity that was retained
by the enzymatically inactive variants, suggesting another
domain of NADase can mediate cytotoxicity. NADase also
contributes to virulence in two mouse skin tissue infection
models and a model of septicaemia, suggesting NADase
plays an important role in establishing infection in the host
(Bricker et al., 2005; Tatsuno et al., 2010).

Conclusion

While several toxins are found across streptococcal
species boundaries, each of these species expresses a
specific repertoire of toxic molecules that target specific
aspects of host immunity and physiology. Indeed, many
clones within individual species express distinct toxin
profiles. These toxins play crucial roles within the host–
pathogen interaction, allowing the pathogen to colonize,
proliferate and disseminate. Several of these toxins have
demonstrated utility as candidate vaccine antigens, in
inactive forms, and in several instances, the specificity of
toxin action has been experimentally utilized in the
development of novel therapeutics, such as anti-cancer
agents. Deepening of our knowledge of the mode of action
of these toxin molecules will aid in our efforts to prevent
disease caused in humans and animals by the various
streptococcal pathogens.
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