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One sentence summary: Microbial pathogens have a perpetual co-evolutionary interaction with the innate immune system of their respective hosts.
This review outlines the multitude of mechanisms utilized by the leading human bacterial pathogen Staphylococcus aureus to modulate and evade
proinflammatory responses induced by Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors.
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ABSTRACT
Early recognition of pathogens by the innate immune system is crucial for bacterial clearance. Many pattern recognition
receptors (PRRs) such as Toll-like (TLRs) and (NOD)-like (NLRs) receptors have been implicated in initial sensing of bacterial
components. The intracellular signaling cascades triggered by these receptors result in transcriptional upregulation of
inflammatory pathways. Although this step is crucial for bacterial elimination, it is also associated with the potential for
substantial immunopathology, which underscores the need for tight control of inflammatory responses. The leading
human bacterial pathogen Staphylococcus aureus expresses over 100 virulence factors that exert numerous effects upon host
cells. In this manner, the pathogen seeks to avoid host recognition or perturb PRR-induced innate immune responses to
allow optimal survival in the host. These immune system interactions may result in enhanced bacterial proliferation but
also provoke systemic cytokine responses associated with sepsis. This review summarizes recent findings on the various
mechanisms applied by S. aureus to modulate or interfere with inflammatory responses through PRRs. Detailed
understanding of these complex interactions can provide new insights toward future immune-stimulatory therapeutics
against infection or immunomodulatory therapeutics to suppress or correct dysregulated inflammation.
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INTRODUCTION
Classical inflammation can be triggered by a variety of stim-
uli such as microbial pathogens or tissue damage, which in-
crease energy expenditure and robustly activate various proin-

flammatory signaling and effector pathways (Han and Ulevitch
2005). The inflammatory response is rapid and characterized by
enhancement of vascular flow and permeability, allowing leak-
age of serum components into the tissue microenvironment.
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Extravasation of immune cells to the affected tissue normally
promotes healing and regeneration. However, overreaction or
failure to appropriately shut down the acute inflammatory re-
sponse may lead to an uncontrolled ‘cytokine storm’, which can
be detrimental to the host. This can be precipitated by a wide
range of infectious (e.g. septic shock) as well as noninfectious
diseases (e.g. asthma or inflammatory bowel disease) (Collins
1996; Tisoncik et al. 2012). Thus, the immune system must care-
fully fine-tune the level of inflammation to clear the pathogenic
threat while avoiding additional tissue damage (Weiss et al.
2008).

Innate immune responses are composed of multiple dy-
namic defense systems, which together play the sentinel role
in early recognition of invading pathogens, deployment of
generalized antimicrobial factors, induction of proinflamma-
tory responses, recruitment of phagocytic cells and activation
of acquired immunity (Medzhitov and Janeway 2000). Acquired
immunity subsequently aids in clearance of pathogens with a
higher level specificity and the generation of immunological
memory (Iwasaki and Medzhitov 2004). The innate immune re-
sponse is mediated through several factors, including recog-
nition of conserved microbial structures termed ‘pathogen-
associated molecular patterns’ (PAMPs) via a broad array of
germline-encoded pattern recognition receptors (PRRs). In ad-
dition, PRRs can recognize endogenous molecules produced by
damaged cells or tissues, called damage-associated molecu-
lar patterns (Mogensen 2009). PRRs comprise Toll-like receptors
(TLRs), nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs), C-type lectin receptors (CLRs), cytosolic DNA
sensors and retinoic acid-inducible (RIG)-I-like receptors (RLRs)
(Xia et al. 2016; Ori, Murase and Kawai 2017). RLRs comprise
retinoic acid-inducible gene I (RIG-I), melanoma differentiation-
associated protein 5 (MDA5), and probable ATP-dependent RNA
helicase DHX58 (LGP2), which coordinate antiviral responses
(Loo and Gale 2011) and thus will not be further discussed in
this review.

A distinctive pattern of subcellular distribution for each of
the different PRR classes provides functional redundancy and
synergy towards recognition of an extensive range of PAMPs de-
rived from a diverse array of potential pathogens including bac-
teria, fungi, protozoa and viruses. PRR-based pathogen detection
results in activation of several signaling pathways that converge
on key transcription factors such as nuclear factor-kappa B (NF-
κB), activator protein 1 (AP1) and interferon (IFN) regulatory fac-
tors. The cumulative effect of PRR signaling is the differential
expression of key proinflammatory as well as antiinflammatory
genes (Takeuchi and Akira 2010). Activation of PRRs-mediated
inflammatory responses must be tightly controlled: too weak
of a response heightens host susceptibility to infection; on the
other hand, an overactive responsemay promote lethal systemic
inflammation, autoimmunity, or the development of acute or
chronic inflammatory diseases (O’Neill, Bryant and Doyle 2009).

Staphylococcus aureus is among the most medically impor-
tant bacterial pathogens that persistently colonizes the anterior
nares of 30% of healthy individuals. In addition, this bacterium
can cause a wide range of serious human infections such as bac-
teremia, endocarditis, pneumonia, skin and wound infections
and deep tissue abscesses (Weidenmaier, Goerke andWolz 2012;
Krismer et al. 2017). Genome-wide analysis on S. aureus suggests
downregulation of virulence genes during colonization and up-
regulation of them in the course of infection (Novick 2003). The
treatment of S. aureus infections is complicated by the increas-
ing number of antibiotic-resistant strains (DeLeo et al. 2010; Tong

et al. 2015) and the induction of hemodynamic changes thatmay
prove resistant to therapeuticmodalities (Polat et al. 2017). More-
over, when pyogenic infection arises, a robust host inflamma-
tory response is induced both locally and systemically, often
termed sepsis syndrome. The peak cytokine response in Gram-
positive pyogenic infections like S. aureus occurs 50–75 h after
the challenge (Opal and Cohen 1999). Despite significant ad-
vancement in treatment modalities, sepsis-induced mortality
rate is 20%–30% in Gram-positive bacterial sepsis and can be as
high as 70%–90%when shock andmultiorgan failure are present
(Polat et al. 2017).

In the struggle to avoid immune clearance, the pathogen
deploys several mechanisms to subvert the fast-acting innate
immune responses through interference with PRR recognition,
restraining complement deposition or activation and delaying
neutrophil recruitment (Foster 2005; Rooijakkers, van Kessel and
van Strijp 2005; Kim et al. 2012; Foster et al. 2014). The under-
standing of staphylococcal immune evasion of both innate and
adaptive immunity has been an area of intense research. In this
light, initial recognition of S. aureus by PRRs is pivotal in set-
ting the course of the host-pathogen interaction and orchestrat-
ing the accompanying immune responses. Our aim in this re-
view is to highlight and discuss recent findings on staphylococ-
cal strategies to modulate host innate immune and inflamma-
tory responses via PRRs (Table 1), a multifaceted interaction that
brings into play a large array of the pathogen’s evasion factors
and virulence determinants.

Toll-like receptor signaling

Human TLRs (TLR1-TLR10) are transmembrane glycoproteins
composed of extracellular leucine-rich repeats (LRRs), a trans-
membrane domain and a cytoplasmic tail containing a Toll/IL-
1 receptor (TIR) domain. Each TLR can recognize a distinct set
of PAMPs (Takeda and Akira 2004; Akira, Uematsu and Takeuchi
2006) either through direct interaction, e.g. TLR1/TLR2, TLR3
and TLR9 (Jin et al. 2007; Latz et al. 2007; Liu et al. 2008), or in-
directly via an accessory PAMP-binding molecule, e.g. interac-
tion between LPS and the MD2-TLR4 complex (Jin et al. 2007).
TLRs are differentially expressed and distributed in different cell
types. Some TLRs are displayed on the cell surface and special-
ized in recognition of PAMPs and endogenous misplaced pro-
teins, whereas other TLRs are mainly localized in intracellular
compartments and recognize nucleic acids or other intracellu-
lar PAMPs (Iwasaki and Medzhitov 2004; Mogensen 2009; Kawai
and Akira 2010) (Fig. 1). TLR expression can be inducible, e.g.
in keratinocytes, or constitutive, e.g. in antigen-presenting cells
(APCs) (Mogensen 2009). Binding of the cognate ligand (PAMP or
DAMP) to the extracellular leucine-rich repeats (LRRs) induces
TLR homo- or heterodimerization. TLR2, for example, is func-
tionally active as a heterodimer in cooperation with TLR1 or
TLR6 to achieve specificity and discriminate subtle differences
in the repertoire of bacterial lipoproteins (reviewed in Farhat
et al. (2008)). Dimerization subsequently results in recruitment
of TIR-containing adaptor protein(s) to the intracellular TIR do-
main of the receptor (Takeda and Akira 2004; O’Neill and Bowie
2007; Song and Lee 2012). Five different TIR-containing adaptors
are known to be recruited depending on the stimuli and TLRs in-
volved (Akira, Takeda and Kaisho 2001; Takeda and Akira 2004):
Myeloid differentiation factor 88 (MyD88), TIR-associated pro-
tein (TIRAP, also known as MyD88 adaptor-like protein (Mal)),
TIR-domain-containing adaptor protein including interferon-β
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Table 1. TLRs, NLRs and CLRs involved in S. aureus recognition.

Receptor-family Specific receptor S. aureus—derived ligand Reference

TLR TLR2 LTA, lipoprotein Schwandner et al. (1999),
Takeuchi et al. (1999), Iwaki
et al. (2002), Sabroe et al.
(2003)

TLR2-TLR1/TLR6 Lipopeptide, lipoprotein Ozinsky et al. (2000), Morr
et al. (2002), Nishiya and
DeFranco (2004), Travassos
et al. (2004)

TLR2-CD14 Peptidoglycan, LTA Schroder et al. (2003)
TLR2-CD36 Diacylglycerides, LTA Hoebe et al. (2005)
TLR2- Asialo-GM1 Unknown (probably a

surface molecule regulated
by Agr)

Ratner et al. (2001), Soong
et al. (2004)

TLR8 S. aureus RNA Bergstrom et al. (2015)
TLR9 S. aureus unmethylated CPG

DNA
Parker and Prince (2012)

NLR NOD2 Peptidoglycan (MDP) Volz et al. (2010)

CLRs MBL LTA Polotsky et al. (1996)
L-ficolin LTA Lynch et al. (2004)
SP-A LTA, CWG Lawson and Reid (2000)

LTA: lipoteichoic acid; CPG: cytosine-phosphate-guanosine;MDP:muramyl dipeptide;MBL:mannose binding lectin; CWG: cell wall glycopolymer; SP: surfactant protein.

(TRIF), TRIF-related adaptor molecule (TRAM), or sterile adaptor
α- and armadillo-motif-containing protein (SARM).

TIRAP has been distinctly involved in bridging MyD88 to
TLR2 and TLR4 (Akira, Takeda and Kaisho 2001; Takeda and
Akira 2004). MyD88 has a modular structure composed of an
N-terminal death domain (DD), an intermediate domain (ID)
and a C-terminal TIR domain (TIR) (Takeda and Akira 2004).
The three domains of MyD88 are associated with interleukin-
1 receptor-associated kinase 4 (IRAK4), IRAK1 and the TIR do-
main of TLRs, respectively. Binding of IRAK4 mediates the
phosphorylation of IRAK1 (Janssens et al. 2003; Takeda and
Akira 2004) and recruitment of tumor necrosis factor receptor-
associated factor 6 (TRAF6) to the receptor complex. Phos-
phorylated IRAK1 and TRAF6 dissociate from the receptor
complex and associate with another complex composed of
transforming growth factor-β-activated kinase-1 (TAK1), TAK1
binding protein 1 (TAB1) and TAB2. This assembly, in turn, trig-
gers activation of two distinct signaling pathways via the in-
hibitor of nuclear factor-κB (IKK) complex and the mitogen-
activated protein kinases (MAPKs) (Akira, Uematsu andTakeuchi
2006; Kawai and Akira 2007; Kawai and Akira 2010). IKK com-
plex formation, composed of IKKα, IKKβ and IKKγ /NEMO, is
the bottleneck for multiple pathways ultimately leading to
NF-κB activation, and thus important in regulating immune
and inflammatory signaling pathways (Hacker and Karin 2006;
Mogensen 2009; Kawai and Akira 2010) (Fig. 2). The TAK1 com-
plex functions as a MAPK kinase kinase kinase (MAP3K), ini-
tiating a cascade involving phosphorylation of MAP kinase ki-
nase (MAP2K) followed by activation of the MAP kinase (MAPK)
subfamilies p38 and Jun-N-terminal kinase (JNK). The MAPK
extracellular signal-regulated kinase (ERK) is also activated by
TAK1 via the IKK complex. Stimulation of these pathways re-
sults in activation factor-1 (AP-1) induction (Ninomiya-Tsuji
et al. 1999; Kawai and Akira 2011). The TLR induced-activation
of NF-κB and AP-1 play a critical role in the induction of in-
flammatory and innate immune responses, by regulating the
expression of a vast number of cytokines, chemokines and an-

timicrobial effectors (Li and Verma 2002; Lawrence 2009; Xia et al.
2016).

The importance of TLR-mediated signaling in bacterial
clearance

The primary staphylococcal PRR located on the plasma mem-
brane is TLR2, which recognizes bacteria-derived PAMPs such
as lipoteichoic acid (LTA) and lipoproteins (Schwandner et al.
1999; Iwaki et al. 2002; Schroder et al. 2003; Dziarski and Gupta
2005). TLR2 is expressed by different cells involved in the inflam-
matory response such as neutrophils, monocytes/macrophages,
dendritic cells, mast cells and astrocytes (reviewed in Fournier
and Philpott (2005)). The dual ligand specificity of TLR2 is de-
termined by its dimerization partner. The formation of TLR2-
TLR6 heterodimers is initiated by diacyl lipopeptides fromGram-
positive bacteria, including S. aureus, (Takeuchi et al. 2001), while
triacyl lipopeptides from Gram-negative bacteria induce the for-
mation of heterodimers with TLR1 (Takeuchi et al. 2002) (Fig. 1).

TLR2 plays an important role in protection against sepsis
caused by S. aureus strains that produce phenol-soluble mod-
ulin (PSM) (Hanzelmann et al. 2016). In addition, a critical role
for TLR2 signaling in innate immunity is corroborated by the
impact of naturally occurring mutations or polymorphisms in
the receptor or downstream components involved in TLR2 sig-
naling, increasing the risk of developing pyogenic bacterial in-
fections. For instance, TLR2- (Takeuchi, Hoshino and Akira 2000;
Gonzalez-Zorn et al. 2005; Hoebe et al. 2005; Strunk et al. 2010)
and MyD88-deficient (Takeuchi, Hoshino and Akira 2000) mice
are predisposed to S. aureus infection and MRSA nasal colo-
nization. Also children carrying mutations in genes encoding
TLR- signaling components, such as MyD88, or IRAK4 (Picard
et al. 2010; von Bernuth et al. 2012) or children with the TLR2
polymorphisms Arg753Gln, are at high risk of developing infec-
tionswith S. aureus and other Gram-positive bacterial pathogens
(Carpenter and O’Neill 2007).
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Figure 1. Toll-like receptor (TLR), NOD-like receptor (NLR) and C-type lectin receptor (CLR) localization and example of ligand. TLRs can be located at plasma membrane and
at endosomes, while NLRs are localized in cytoplasm. CLRs include soluble molecules such as MBL, and plasma membrane located receptors. See text for details.
LTA: Lipoteichoic acid; LPS: Lipopolysaccharide; ssRNA: Single-stranded ribonucleic acid; iE-DAP: D-γ -glutamyl-meso-DAP dipeptide; MDP: Muramyl dipeptide; MBL:
mannose binding lectin; ITIM: immunoreceptor tyrosine-based inhibition motifs; ITAM: immune-receptor tyrosine-based activation motif.

Downregulation of TLR2-mediated NF-κB activation
by S. aureus

Staphylococcus aureus is detected by the host through its multi-
ple PAMPs, which leads to the release of proinflammatory me-
diators and antimicrobial peptides (AMPs) through PRR signal-
ing and inflammasome activation (reviewed in Fournier and
Philpott (2005)). TLR2 activates the immune cells in response to
its agonists, bacterial lipoproteins (Takeuchi, Hoshino and Akira
2000; Hashimoto et al. 2006). Staphylococcus aureus PSMs could
influence the activation of TLR2 since the protein supports mo-
bilizing and release of lipoprotein (Hanzelmann et al. 2016). No-
tably, S. aureus deficient in lipoprotein synthesis lose their ca-
pability to activate this receptor (Stoll et al. 2005). In addition,
the pathogen dampens appropriate TLR2 activation by at least

three distinct mechanisms: inhibition of heterodimer forma-
tion, structural mimicry of the TIR domain and activation of
inhibitory receptor pathways. These three mechanisms are de-
scribed below.

Evasion of initial recognition and heterodimer formation
The role of staphylococcal superantigen-like proteins (SSLs) in
pathogenesis has been proven in a large number of studies
(Baker et al. 2007; Bestebroer et al. 2007; de Haas et al. 2009;
Walenkamp et al. 2009; Itoh et al. 2010a,b; Patel et al. 2010;
Walenkamp et al. 2010; Koymans et al. 2017). The SSL fam-
ily consist of 14 different members (SSL1-SSL14), out of which
SSL1-SSL11 and SSL12-SSL14 proteins are encoded by genes
located on staphylococcal pathogenicity island 2 (SaPI2) and
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Figure 2. Stimuli-induced TLR2- and NOD2- mediated signaling. The TLR- (e.g. TLR2) pathway is mainly mediated through MyD88. TIRAP is a sorting adaptor used by TLR2
and TLR4. MyD88 recruits IRAKs and TRAF6 and ultimately induces pro-inflammatory responses through activation of NF-κB and AP-1. NOD- (e.g. NOD2) induced
NF-κB activation is mediated through RICK by triggering the K63-type polyubiquitination of IKKβ. The cooperation between NODs and NLRPs induces inflammasome
formation resulting in production ofmature IL-1β. MyD88: myeloid differentiation factor-88, TIRAP: TIR associated protein, IRAK: IL-1 receptor associated kinase, TRAF:
tumor necrosis factor receptor-associated factor, TAK1: growth factor-β-activated kinase-1, TAB: TAK1 binding protein 1, IKK: IkappaB kinase, MAPK: mitogen activated
protein kinase, NF-κB: nuclear factor kappa B, AP-1: activator protein 1, RICK: CARD-containing serine/threonine kinase.

immune evasion cluster 2 (IEC2), respectively (Fitzgerald et al.
2003; Jongerius et al. 2007). Among these, SSL3, and to a lesser
extent SSL4, negatively interfere with TLR2 recognition, with a
net outcome of suppressing chemokine (e.g. IL-8) production
by HEK cells explicitly expressing TLR1/2 and TLR2/6 dimers
(Bardoel et al. 2012). SSL3 has also been shown to block TLR2-
mediated secretion of tumor necrosis factor (TNF) in murine
macrophages (Yokoyama et al. 2012). In the latter case, SSL3
blocked binding of bacterial lipopeptides to the extracellular
domain of TLR2 and in the case of ligand binding, prevented
the formation of TLR2–TLR1 and TLR2–TLR6 heterodimers
(Koymans et al. 2015).

Evasion through structural mimicry
Structural mimicry of host proteins is an important mechanism
by which pathogens manipulate host immune responses (Steb-
bins and Galan 2001), including TLR-mediated signaling through
PAMP recognition (reviewed in Johannessen et al. (2014)). Bac-

terial TIR-homologous proteins have been identified in a wide
range of Gram-negative bacteria, and more recently, in Gram-
positive species. Members of the bacterial TIR-homologous pro-
tein family are typically 230-310 amino acids in size, wherein
the conserved TIR domain, 150-200 amino acids in length, is lo-
calized at the C-terminus or N-terminus, while the remaining
protein sequence shows a high degree of variation (reviewed
in Rana et al. (2013)). The majority of investigations on bacte-
rial TIR proteins have demonstrated that these proteins nega-
tively interfere with TLR signaling pathways and consequently
inhibit NF-κB activation (Newman et al. 2006; Low et al. 2007; Cirl
et al. 2008; Radhakrishnan et al. 2009; Rana et al. 2011; Askar-
ian et al. 2014; Kraemer et al. 2014; Zou et al. 2014). However, on
one occasion, the bacterial TIR protein resulted in activation of
same pathway (Patterson et al. 2014). Recently a TIR-containing
protein (TirS) was identified in the genome of S. aureus strain
MSSA476 and found to be localized at the mobile genetic
element ‘staphylococcal chromosomal cassettes’ (SCC)476. TirS
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exerted a specific inhibitory effect against stimulus-induced
TLR2-mediated NF-κB activation, JNK phosphorylation, and pro-
duction of proinflammatory cytokines. Furthermore, a compar-
ison of pathogenicity of the MSSA476 wild-type strain vs. its
isogenic %tirS mutant in an intravenous mouse infection model
revealed that presence of TirS increased the bacterial load in
multiple organs (Askarian et al. 2014). Later, TirS was reported
to be present in 12% of S. aureus (both MSSA and MRSA) strains,
and found to downregulate NF-κB pathway through inhibition
of not only TLR2, but also TLR4, TLR5 and TLR9 (Patot et al. 2017).
TirS in these S. aureus strains was localized within SCC together
with genes encoding fusidic acid resistance and, in some cases,
genes providing resistance to methicillin. The characterization
of these SSC elements links two critical clinco-pathological
features of contemporary staphylococcal infection, immune
evasion and antibiotic resistance, since exposure to fusidic acid
increased TirS expression (Patot et al. 2017). TirS has also been
described in an animal isolate of S. aureus (Patterson et al. 2014).
The only other Gram-positive bacterial TIR protein known to
date was identified in Entereococcus faecalis, where it is localized
in a genomic region of phage origin, which might suggest hori-
zontal gene transfer (Kraemer et al. 2014; Zou et al. 2014).

Manipulation of TLRs by activating inhibitory receptors
Inhibitory immune receptors negatively interfere with signal
transduction induced by activating receptors. Many inhibitory
receptors have specific intracellular sequence motifs, like im-
munoreceptor tyrosine-based inhibitory motifs (ITIMs). Activa-
tion of ITIM-bearing receptors results in phosphorylation of
ITIMs and subsequent recruitment of mediators, which causes
them to negatively regulate inflammatory signals from activat-
ing receptors such as TLRs (van Avondt, van Sorge and Meyaard
2015). Murine paired Ig-like receptor (PIR)-B is identified as a re-
ceptor for S. aureus LTA. PIR-B has ITIMs in the cytoplasmic do-
main and negatively regulates inflammatory cytokine produc-
tion in response to heat-killed S. aureus in vitro. Mice that are
deficient in PIR-B (Pirb-/-) have reduced bacterial load in blood,
increased clearance of S. aureus and survive longer than wild-
type mice after infection, showing the adverse effect of PIR-B
activation for S. aureus clearance (Nakayama et al. 2007, 2012).

Potential biotherapeutic implications of interference
with TLR2 signaling

Insights into the negative regulation of TLR signaling by mi-
crobes such as S. aureusmay open new avenues to develop treat-
ments of uncontrolled inflammation.

Therapeutic interference with anomalous immune re-
sponses may in theory be possible. The therapeutic potential
of microbial TIR domain proteins may be utilized in a highly
specific way as they come in a wide variety and have fine dif-
ferences in their action on TLR signaling (Rana et al. 2013). De-
rived from a vaccinia virus A46R protein, VIPER was generated
as a potent inhibitor of TLR4-mediated responses (Lysakova-
Devine et al. 2010). Cell-penetrating inhibitory peptides are tar-
geting TLR adapter-receptor interactions were based on the BB
loop region of the TIR domain and the intermediate domain
within MyD88 (reviewed in Fekonja, Avbelj and Jerala (2012)).
Interestingly their action could be enhanced by applying con-
cepts discovered inmicrobial TIR domain proteins. Since coiled–
coiledmediated TIR domain dimerization is amethod exerted by
bacterial TIR domain proteins (Newman et al. 2006), this strat-
egy can be utilized to improve wide-spectrum TLR inhibitors

(reviewed in Fekonja, Avbelj and Jerala (2012)). Thus research
on eukaryotic and bacterial TIR domains or modified variants
of them together is a valuable source of templates and strate-
gies for drug design to downregulate an overactive innate im-
mune response. Taken together, these drug development strate-
gies suggest that antiinflammatory bacterial proteins targeting
TLRs could be co-opted prevent, dampen or treat inflammatory
diseases.

TLR2 also has a unique role in cancer progression andmetas-
tasis (Huang et al. 2008), and the potential for anti-TLR2 anti-
body or TLR2 antagonist therapy in cancer immunotherapy has
been suggested (Yang et al. 2009, 2012). Negative regulators of
TLRs have been identified and characterized (Kondo, Kawai and
Akira 2012) and interference with TLR2 could also be of thera-
peutic interest for certain infections. For example, the addition
of anti-TLR2 antibody tomonocytes infected withMycobacterium
avium subsp. paratuberculosis enhances phagosome maturation
and intracellular bacterial clearance (Weiss et al. 2008).Moreover,
immune-neutralization of TLR2 function with a monoclonal an-
tibody against the extracellular domain of TLR2 was reported to
induce amodulatory response to S. aureus during acute infection
in vivo (Meng et al. 2004). In contrast, pretreatment of animals
with corticosteroids did not reducemortality during S. aureus in-
fection (Opal and Cohen 1999) and anticytokine therapies had
a detrimental effect in Gram-positive sepsis (Opal and Cohen
1999; Tracey and Abraham 1999). In all cases, the collaborative
activity among different PRRs must be considered in the devel-
opment of therapeutic strategies against inflammation, cancer
and/or infection.

NOD like receptor signaling

The nucleotide-binding and oligomerization domain (NOD)-like
receptors (NLRs) are a family of intracellular/cytosolic PRRs, con-
sisting of more than 20 members in humans. NLRs recognize
PAMPs and endogenous molecules introduced into host cell cy-
tosol (Moreira and Zamboni 2012). These receptors are classi-
fied to five different subfamilies based on N-terminal structural
characteristics and include NLRA (A for acidic transactivation
domain), NLRB (B for baculovirus inhibitor of apoptosis protein
repeat), NLRC (C for caspase recruitment domain CARD), NLRP
(P for pyrin domain) and NLRX (X for no significant homology).
The activation of NLRs can result in transcriptional activation
(e.g. NLRA), autophagy (e.g. NLRCs and NLRX), inflammasome
formation (e.g. NLRPs and NLRB) and/or signal transduction (e.g.
NLRCs (Motta et al. 2015)). In the following, NLRPs and NLRCs are
described in more detail.

Activation of NLRPs induces the assembly of a multipro-
tein platform called the inflammasome, triggers activation of
caspase-1 to promote maturation and secretion of caspase 1-
dependent inflammatory cytokines such as IL-1β and IL-18, and
ultimately initiates programmed cellular pyroptosis (Munoz-
Planillo et al. 2009; Schroder and Tschopp 2010), an extremely
rapid form of programmed host cell death. Pyroptosis leads to
the sudden release of numerous hostmolecules that further am-
plify inflammation (Aachoui et al. 2013). In general, NLRP3 can be
activated upon sensing awide range of stress signals, e.g. lysoso-
mal damage, reactive oxygen species (ROS), the efflux of potas-
sium, and pathogen-derived molecules (Willingham et al. 2007;
Schroder and Tschopp 2010). The genetic background, at least in
mice, can influence the level of macrophage pyroptosis, which
in turn can affect the progression of S. aureus infection (Accarias
et al. 2015).
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The NLRCs (NOD1 and NOD2) play key roles in both bacte-
rial and non-bacterial infections. Their structures consist of a
C-terminal LRR domain, which mediates protein–protein inter-
action, a central nucleotide-binding domain, and either a sin-
gle or two N-terminal CARD domain(s). Activation of NOD1 and
NOD2 is triggered by two different peptidoglycan motifs: D-
glutamyl-meso-diaminopimelic acid (iE-DAP) of Gram-negative
bacteria or muramyl dipeptide (MDP), which is the minimal
bioactive structure of peptidoglycan in Gram-positive bacteria
(Strober et al. 2006; Moreira and Zamboni 2012; Oviedo-Boyso,
Bravo-Patino and Baizabal-Aguirre 2014) (Fig. 1). Recombinant
NOD2 binds MDP with high affinity, confirming a direct in-
teraction and that NOD2 functions as a cytosolic PRR (Grimes
et al. 2012). Monomeric peptidoglycan fragments of S. aureus in-
duce NOD2 activation (Volz et al. 2010). Furthermore, the S. au-
reus α-hemolysin, a pore-forming cytotoxin, facilitates NOD2-
dependent recognition of S. aureus during cutaneous infection
(Hruz et al. 2009).

Activation of NF-κB signaling pathways through NOD1 and
NOD2 is associated with recruitment of a CARD-containing ser-
ine/threonine kinase called receptor-interacting serine/threonine
protein kinase 2 (RICK, also called RIP2 and RIPK2), which in-
teracts with the CARD domain(s) of NOD1 and NOD2. Homo-
topic CARD–CARD interaction is achieved through recruitment
of E3 ubiquitin ligase TRAF6 to RICK, which results in a series
of ubiquitination-dependent events and ultimately activation
of the TAK1 complex. Activated TAK1 triggers K63-type polyu-
biquitination of IKKβ and subsequently NF-κB activation (Ogura
et al. 2001; Strober et al. 2006; Hasegawa et al. 2008; Moreira and
Zamboni 2012) (Fig. 2). Furthermore, activation of other signaling
pathways, including the p38, ERK and JNK through NODs-RICK
interaction, has been reported. NODs can also interact with NL-
RPs (e.g. NLRP1, NLRP3 and NLRP12) and result in caspase-1 ac-
tivation and maturation of L-1β and IL-18 (Strober et al. 2006;
Moreira and Zamboni 2012 and references therein) (Fig. 2).

Consequence of S. aureus activation of NLRs

The importance of NOD2 in induction of various cytokines, e.g.
IL-1β and IL-6, and/or antimicrobial peptides, e.g. β-defensin,
in host defense against S. aureus infection, has been demon-
strated (Deshmukh et al. 2009; Hruz et al. 2009). For instance,
NOD2-deficient mice show increased susceptibility and mortal-
ity upon intraperitoneal S. aureus infection. This susceptibility
phenotype was associated with failure of neutrophil phagocyto-
sis, high bacterial load in several organs and magnified produc-
tion of Th-1 derived cytokines (Deshmukh et al. 2009). Subcuta-
neous infection of NOD2-deficientmicewith S. aureus resulted in
large skin ulcerations, impaired bacterial clearance and delayed
proinflammatory responses (Hruz et al. 2009). Other data demon-
strate that while NOD2 is not essential for bacterial clearance in
experimental S. aureus pneumonia, it contributes significantly to
the regulation of the corresponding lung inflammation during
infection. Notably, pulmonary lesions and inflammation, which
are a critical factor during the recovery of host from pneumonia,
are less severe in NOD2-deficient mice (Kapetanovic et al. 2010).
Involvement of NOD2 in the initiation of host inflammatory re-
sponses in resident brain cells infected with S. aureus has also
been reported (Liu, Chauhan andMarriott 2010). In addition,mu-
tations in the NOD2 gene are associated with the development
of clinically important chronic inflammatory diseases, such as
an injured intestinal epithelial barrier in Crohn’s disease (Abreu
et al. 2002; Cuthbert et al. 2002).

Although S. aureus is commonly regarded as an extracellular
bacterium, it can internalize and invade several types of non-
professional phagocytes, including human keratinocytes (Kin-
tarak et al. 2004). NOD2 is functional in keratinocytes (Voss et al.
2006) and its expression is elevated in the presence of several
PAMPs (Kobayashi et al. 2009) and during S. aureus infection (Roth
et al. 2014). Staphylococcus aureus-induced NOD2 expression is
also found in mammary glands during bacterial mastitis (Wang
et al. 2015). Hence, these data indicate a likely role of NOD2 in
intracellular recognition of S. aureus. Recently, a contribution of
NOD2 in keratinocytes inmediating S. aureus-induced IL-17C ex-
pression was identified (Roth et al. 2014). IL-17C is a member of
IL-17 cytokine family, which plays a prominent role in the regu-
lation of epithelial immune responses (Xie et al. 2012). Patients
suffering from atopic dermatitis (AD), a chronically relapsing in-
flammatory skin disease, are often colonized with S. aureus (Ong
2006). Notably, an association betweenNOD2 polymorphism and
AD has been identified (Kabesch et al. 2003; Macaluso et al. 2007),
suggesting impairment of S. aureus recognition among these pa-
tients. Additionally, a role of NOD2 in the induction of type I IFN
signaling and secretion of IFN-β in response to S. aureushas been
described (Parker et al. 2014).

NLRP3 inflammasome activation can be triggered by
phagocytosis of S. aureus and the following lysosome-mediated
degradation of its peptidoglycan. However, S. aureus O-acetyl
transferase A modifies the peptidoglycan, rendering it more
resistant to lysosome-mediated degradation. In this manner,
induction of inflammasome is thereby blunted, and the critical
IL-1β-mediated immune response is subverted (Shimada et al.
2010). NLRP3 can be triggered by S. aureus α-hemolysin in
cultured cells in vitro and in murine models of pneumonia and
skin infection (Craven et al. 2009; Munoz-Planillo et al. 2009; Cho
et al. 2012; Kebaier et al. 2012). Notably, S. aureus α-hemolysin
is expressed by the majority of S. aureus isolates (Menzies and
Kourteva 2000; Haslinger et al. 2003). In addition, S. aureus β- and
γ - hemolysins (Munoz-Planillo et al. 2009), Panton–Valentine
leukocidin (PVL) (Holzinger et al. 2012) and leukocidin A/B
(LukAB, also known as LukGH) (Melehani et al. 2015) activate
the NLRP3 inflammasome in monocytes/macrophages resulting
in maturation and secretion of IL-1β and IL-18 and induction
of necrotic cell death. However, the role of this NLRP3-driven
response in immunity against S. aureus in vivo remains con-
troversial. The NLRP3-deficient host-signaling pathway is not
required for bacterial clearance in a murine pneumonia infec-
tion model though inducing necrotic pulmonary injury (Kebaier
et al. 2012). However, in a murine S. aureus skin infection model,
induction of IL-1β promotes abscess formation and bacterial
clearance (Cho et al. 2012). An antitoxin platform has been
contemplated for a potential antiinfective/antiinflammatory
therapy targeting the NLRP3 inflammasome. Immunization of
micewith inactivated α-hemolysin or pharmaceutical inhibition
of α-hemolysin attenuates the severity of S. aureus pneumonia
(Ragle and BubeckWardenburg 2009; Ragle, Karginov and Bubeck
Wardenburg 2010; Hua et al. 2014). Recently, nanosponges have
been suggested as a detoxification treatment for a variety of
injuries and disease caused by pore-forming toxins such as
α-hemolysin. These particles mimic red blood cell membrane
and absorb different pore-forming toxins regardless of their
molecular structures, and blunt inflammatory activation and
pathology (Hu et al. 2013; Copp et al. 2014; Pang et al. 2015;
Escajadillo et al. 2017).

Another member of this family is NLRP7, which can
form an inflammasome after recognizing bacterial acylated
lipopeptides, once again resulting in caspase-1-dependent IL-1β
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and IL-18 maturation. In one study, activation of NLRP7 by S. au-
reus was shown to diminish bacterial replication inside human
macrophages (Khare et al. 2012).

C-type lectin receptors and recognition of S. aureus

Conserved microbial carbohydrate structures are recognized by
another class of PRRs called C-type lectin receptors (CLRs) and
trigger innate and acquired immune responses (reviewed in San-
cho and Reis e Sousa (2012); Hoving, Wilson and Brown (2014)).
CLRs arewidely expressed by different cell types including APCs.
The term ‘C-type’ refers to their ability to recognition carbohy-
drates in calcium (Ca2+)-dependent manner. However, CLRs are
able to recognize many non-carbohydrate ligands, such as lipids
and proteins, through mechanisms that are not yet fully under-
stood (Drickamer and Fadden 2002; Zelensky and Gready 2005).
The lectin activity of these receptors is mediated by conserved
carbohydrate-recognition domains (CRDs). Type I and type II
CLRs typically carry multiple or a single CRD(s) domain, respec-
tively. In addition, soluble/circulating CLRs exist and include
mannose-binding lectin (MBL), which is an oligomeric protein
that binds an array of carbohydrate patterns on pathogen sur-
faces (Zizzari et al. 2015) (Fig. 1). The outcome of CLR-microbe en-
gagement depends on the signaling motif. Generally, phospho-
rylation of cytoplasmic ITIMs leads to downregulation of cellular
processes and the recruitment of phosphatases (e.g. SHP-1 and
SHP-2), whereas phosphorylation of immune-receptor tyrosine-
based activation motifs (ITAMs/hemITAM), results in an induc-
tion of kinase cascades (e.g. spleen tyrosine kinase (Syk)) and
cellular activation. However, still another group of CLRs does
not possess intracellular signalingmotifs and signaling cascades
proceed independently of kinases and/or phosphatases. Acti-
vation of CLRs ultimately triggers phagocytosis and antimicro-
bial responses (Sancho and Reis e Sousa 2012; Lepenies, Lee and
Sonkaria 2013; Hoving, Wilson and Brown 2014).

Staphylococcal evasion factors for CLR recognition have not
been described so far. However, S. aureus uses diverse strategies
to interfere with later stages of the complement cascades that
are induced by CLRs among others (Lambris, Ricklin and Geis-
brecht 2008; Zipfel and Skerka 2014). The CLRs Clec-60 and Clec-
87 play a role during host immune responses against staphy-
lococcal infection in the invertebrate C. elegans model system
(JebaMercy and Balamurugan 2012). In humans, low MBL levels
and/or MBL2 polymorphism are associated with a high suscep-
tibility to S. aureus bacteremia (Chong et al. 2014). Even though
MBL binds LTA of Gram-positive bacteria, a comparative study
found that the LTA of S. aureus, which lacks terminal sugars,
binds only weakly to MBL (Polotsky et al. 1996). L-ficolin, whose
structure closely resembles MBL, is another soluble LTA-binding
lectin that has been proposed as the major staphylococcal com-
plement activating receptor (Lynch et al. 2004). Additionally, S.
aureus LTA and cell wall glycopolymer (CWG) can be recognized
by the surfactant proteins A and D, which are collectins, a sub-
group of mammalian lectins (Lawson and Reid 2000; van deWe-
tering et al. 2001). MBL is involved in the activation of the lectin
pathway (LP) of the complement system (Matsushita et al. 2012)
and the number of inhibitors triggered by this pathway by S. au-
reus is noteworthy. For instance, S. aureus extracellular adher-
ence protein (Eap) blocks activation of the LP and classical path-
way (CP) of complement (Woehl et al. 2014, 2017). Unique mech-
anisms of action employed by staphylococcal complement in-
hibitors have been reviewed in several publications (Lambris,
Ricklin and Geisbrecht 2008; Laarman et al. 2010; Zecconi and
Scali 2013).

Type I IFN signaling and recognition of S. aureus

Type I IFN signaling was initially identified during viral infec-
tions, but the pathway was later demonstrated to be activated
by bacteria as well through multiple intracellular and cytosolic
receptors (Kovarik et al. 2016). More specifically, ligand binding
to PRRs, such as TLRs, NLRs, RLRs or DNA sensors, results in ac-
tivation of interferon regulatory factor (IRF) family of transcrip-
tion factors, which results in expression of IFN-α/β. The interfer-
ons stimulate cells in an autocrine and paracrine manner (Boxx
and Cheng 2016). Mechanistically, IFN-α/β binds to its cognate
receptor, interferon α/β receptor (IFNAR), which leads to activa-
tion of hundreds of interferon-stimulated genes (ISGs) through
phosphorylation of the homodimeric signal transducer and ac-
tivation of transcription (STAT)-1 and the heterotrimeric STAT1–
STAT2–IRF9 (i.e. interferon-stimulated gene factor (ISGF3) tran-
scription factors) (Decker, Muller and Stockinger 2005; Monroe,
McWhirter and Vance 2010) (Fig. 3). The outcome of bacterial in-
fection as a consequence of type I interferon signaling is influ-
enced by many factors including the route and site of infection,
bacterial replication and strain-specific virulence factors (Boxx
and Cheng 2016).

Staphylococcus aureus PAMPs induces type I IFN signaling by
various PRRs, depending on the host cell types. Degradation
of S. aureus in phagosomes can lead to exposure of bacterial
deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs that
trigger a TLR9-mediated enhancement of classical inflamma-
tory cytokines production along with induction of type I inter-
ferons (IFNs) (Wolf et al. 2011). TLR9 requires an adaptor protein
such as MyD88 and enhances mitogen-activated protein kinase
and NF-κB activation (Wagner 2004). Injection of staphylococ-
cal DNA in a mouse model of cutaneous inflammation causes
a robust inflammatory response and arthritis (Deng et al. 1999;
Molne, Collins and Tarkowski 2003). TLR9 is the pivotal recep-
tor mediating the induction of type I IFN signaling in dendritic
cells in response to S. aureus. Interestingly, S. aureus load was
enhanced in the lungs of TLR9−/− mice, which has no defect
in recruitment of neutrophils and diminished TNF production
(Parker and Prince 2012). Another example is TLR8, which rec-
ognizes degradation products of U-rich RNA in the form of uri-
dine and short U-containing oligomers RNA (Heil et al. 2004).
TLR8 triggers a type I IFN response via an interferon regulatory
factor (IRF)-5 signaling axis in primary human monocytes and
macrophages. The TLR8-IRF5-type I IFN response in phagocytes
is antagonized by TLR2 when the receptor is simultaneously ac-
tivated by S. aureus. Indeed, S. aureus lipoprotein activates TLR2
to attenuate TLR8-induced secretion of IFNβ and IL12 by bacte-
ria degradedwithin the phagosome (Bergstrom et al. 2015). Novel
approaches to avoid dysregulation of TLR2/TLR8 signaling may
thus improve clinical outcomes in S. aureus sepsis.

Type I IFN signaling can also be induced by bacterial sec-
ond messengers such as cyclic-di-AMP (c-di-AMP) or cyclic-di-
GMP (c-di-GMP) (Parvatiyar et al. 2012). These second messen-
gers are sensed by the cytosolic DNA sensors DDX4 and IFI16,
followed by activation of the transmembrane adaptor at the en-
doplasmatic reticulum, stimulator of IFN genes (STING) (Boxx
and Cheng 2016). Recently, extracellular c-di-AMP was shown
to promote S. aureus intracellular survival in human monocyte-
derived macrophages (Gries et al. 2016). However, STING sig-
naling appears to be independent of other DNA sensing path-
ways such as the TLR9 pathway, although both pathways pre-
dominantly use TBK1 (Serine/threonine-protein kinase TBK1)-
IRF3 and NF-κB to control gene expression (Kumar, Kawai and
Akira 2011). Induction of the STING pathway in response to
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Figure 3. PRR-mediated Type I IFN signaling in response to S. aureus. Staphylococcal molecules such as protein A, DNA and RNA are recognized by TLRs, e.g. TLR8 and TLR9,
or other types of cytosolic receptors, e.g. NOD2 and STING, resulting in Type I IFN production. NOD2 recognizes the structurally unique MDP, while STING is receptor
for e.g. cyclic di-AMP. In either case, an activation of type I IFN signaling occur in a TBK1-IRF3mediatedmanner. The TLR-, NOD-, or STINGmediated activation of IRF(s)
family of transcription factors, results in expression of IFN-α/β. The type I IFNs, e.g. IFN-α and IFN-β, bind to their specific receptors IFNRs resulting in phosphorylation
and activation JAK1 and TYK2. This leads to phosphorylation of STAT proteins, and consequently, rapid assembly of ISGF-3. The ISGF-3 complex then translocates
to the nucleus, where it binds the promoter sequence ISRE. MDP: Muramyl Dipeptides, TBK1: Serine/threonine-protein kinase TBK1, IRF: interferon regulatory factor,
JAK1: Janus kinase 1, TYK2: tyrosine kinase 2, STAT: signal transducer and activator of transcription, ISGF-3: IFN-stimulated gene factor 3, ISRE: IFN-stimulated response
elements.

intracellular pathogens such as Listeria monocytogenes (Archer,
Durack and Portnoy 2014) and M. tuberculosis (Manzanillo et al.
2012) reduce host defense to infection. In a cutaneous S. aureus
infection model, induction of STING antagonized innate immu-
nity and allowed infection spread by impairing neutrophil re-
cruitment and IL-1β secretion (Scumpia et al. 2017).

Bacterial infection-mediated activation of type I IFNs, which
influences the regulation of immune and tissue homeostasis,
may have detrimental or beneficial consequences for the host
(Kovarik et al. 2016). Staphylococcus aureus invades both phago-
cytic and non-phagocytic cells (Kintarak et al. 2004), and induces
type I IFN signaling in various cell types (Kasahara et al. 1982;
Smith, Johnson and Blalock 1983; Svensson et al. 1996; Liljeroos
et al. 2008; Parcina et al. 2008; Martin et al. 2009; Kaplan et al. 2012;
Parker and Prince 2012). Depending on context and site of infec-
tion, S. aureus-induced type I IFN signaling has been found to
be either adverse (Martin et al. 2009) or protective (Roquilly et al.
2010; Kaplan et al. 2012; Lizak and Yarovinsky 2012) to the ex-
perimentally infected host. For instance, in models of primary
respiratory infection with S. aureus using Ifnar−/− mice, type I
IFN signaling appears to play a negative role in the outcome
of infection (Martin et al. 2009). In contrast, in a subcutaneous
model of infection, the induction of Ifnb expression is suggested
to be important in controlling the infection. Indeed, supplemen-

tation of IFN-β to mice in a skin model of infection resulted in
enhanced clearance of S. aureus and reduced lesion sizes (Kaplan
et al. 2012). Pathogenicity of S. aureus strains has been mainly
correlated to the expression level of type I IFNs induced during
infection and resulting exaggeration of inflammatory responses
(Parker et al. 2014). However, the full role of type I IFNs on the
outcome and pathogenesis of staphylococcal infection and in-
volvement of PRRs remains poorly understood. Future studies
may open novel avenues in immunomodulatory therapy.

Collaboration between PRRs during S. aureus infections

PRRs as mediators of innate immunity orchestrate together to
ensure host protection from pathogen invasion by fortifying ep-
ithelial barriers and cellular defenses. Collaboration and inter-
play broaden the spectrum of activity of PRRs, enabling integra-
tion of various pathways. However, the molecules that are as-
sociated with the synergistic activation of the several pathways
merits further investigation.

MBL, as described above, functions as an opsonin and is in-
volved in activation of the lectin pathway of the complement
system through recognition of polysaccharide (i.e. glycan) (re-
viewed in van Kooyk and Rabinovich (2008); Ip et al. (2009)). Ac-
cumulating studies suggest a collaboration between MBL and
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TLRs (Wang et al. 2011; Liu et al. 2014), which is demonstrated
to modulate cytokine responses during bacterial and viral infec-
tions (Jack et al. 2001; Ip et al. 2008; Ling et al. 2012). For example,
MBL cooperation with TLR2/TLR6 is initiated upon engulfment
of S. aureus into the phagosome of macrophages. For this pur-
pose, MBL binds to the LTA and complexes with TLR2 to enhance
ligand delivery, resulting in enhancement of NF-κB activation (Ip
et al. 2008).

The synergistic interplay between TLR2 and NOD2
(Kobayashi et al. 2005; Chen et al. 2008; Volz et al. 2010; Schaffler
et al. 2014) contributes to both induction or inhibition of specific
immune responses (Netea et al. 2004). Dendritic cells (DCs)
are one of most important innate immune cells. The interplay
between NOD2 and TLR2 results in cellular activation observed
in murine DCs stimulated with S. aureus-derived PAMPs (Volz
et al. 2010). TLR2 can boost the NOD2 response to S. aureus, and
NOD2-TLR2 co-stimulation leads to increased activation and
maturation of DCs (Schaffler et al. 2014). Notably, DCs lacking
TLR2 were unresponsive to S. aureus-derived peptidoglycan
(Volz et al. 2010).

In addition, the cumulative effect of NOD2 and TLR2 activa-
tion in murine keratinocytes from oral epithelium resulted in
induction of IL-6 and IL-1 β secretion. Importantly, the produc-
tion of these cytokines was reduced by 50% in the absence of
either NOD2 or TLR2 (Muller-Anstett et al. 2010). However, NOD2
is shown to downregulate TLR1/2 mediated IL-1 β gene expres-
sion in macrophages (Dahiya, Pandey and Sodhi 2011). In line
with that, NOD2 stimulation, but not NOD2-TLR2 costimulation,
promoted intestinal homeostasis through downregulation of in-
flammatory pathways. This is supported by the finding that acti-
vation of NOD2 protected mice from experimental staphylococ-
cal colitis (Watanabe et al. 2008). Furthermore, a loss of function
due to mutations in NOD2 increases the inflammatory patho-
genesis of Crohn’s disease (Schaffler et al. 2014).

A selective form of autophagy, xenophagy, is involved in the
degradation of long-lived cellular proteins, organelles or mi-
crobes within eukaryotic cells. In this process, targets are recog-
nized, whereupon entrapment and sequestration of infectious
agents into autophagic vesicles is promoted. Thereafter, lyso-
somes fuse with these autophagic vesicles to degrade their con-
tents. Xenophagy is important for the direct and indirect killing
of intracellular and extracellular pathogens, for the generation
of bactericidal peptides, as well as for antigen presentation (Sor-
bara and Girardin 2015). Autophagy can also serve to limit the
availability of inflammasome components and decrease proin-
flammatory signaling (Levine, Mizushima and Virgin 2011; Shi
et al. 2012). In host cells, both TLR- and NLR-stimulation is
associated with induction of xenophagy as a method of de-
fense against bacterial infection (Netea-Maier et al. 2016). While
xenophagy enhances host cell tolerance to S. aureus toxins (Mau-
rer, Torres and Cadwell 2015), defective xenophagy is associ-
ated with cystic fibrosis and leads to overproduction of inflam-
matory cytokines as well as failure of S. aureus clearance (Jarry
and Cheung 2006). Impaired xenophagy is also associated with
Crohn’s disease development in patients with NOD2 mutation,
since NOD2 is needed to promote autophagosome formation
(Travassos et al. 2010; Caruso et al. 2014). Thus, restoration of
xenophagy may be considered as a promising area for research
on novel therapeutic strategies targeting the intracellular stages
of S. aureus infection.

Both TLR2 and NOD2 are known to participate in autophagy
and phagocytosis activation via JNK signaling upon S. aureus
infection (Fang et al. 2014). However, the exact type of au-
tophagy triggered by the bacteria has not been described so

far. To evade killing by nonprofessional phagocytes, S. aureus
can subvert xenophagy by inhibiting autophagosome matu-
ration. By this, staphylococci replicate within the autophago-
some, and subsequently escape to the cytoplasm whereupon
they can induce host cell death (Schnaith et al. 2007; O’Keeffe
et al. 2015; Soong et al. 2015). Furthermore, S. aureus can evade
keratinocyte-mediated clearance in skin infection. Differentiat-
ing keratinocytes, which generally recognize S. aureus via NOD2,
are actively undergoing autophagy. The bacterium activates
caspase-1-mediated bacterial clearance through pyroptosis (Ay-
mard et al. 2011). If keratinocytes fail to induce clearance, intra-
cellular staphylococci stimulate autophagy, which in turn pro-
motes degradation of inflammasome components, ultimately
aiding the survival of S. aureus (Soong et al. 2015).

All these findings reflect the synergy between various PRRs,
their signaling cascades and induced defense mechanisms
against S. aureus, and also how the pathogen uses multiple van-
tage points to circumvent these defenses. Moreover, this collab-
orative activity could potentially be exploited tomodulate or im-
prove the host response against pathogenic bacteria that induce
an exacerbated inflammatory response.

CONCLUSION REMARKS AND FUTURE
PERSPECTIVE
A fundamental role of the innate immunity is to evoke an ap-
propriate response against invading pathogens or to tissue in-
jury. However, genetic polymorphisms and consequently the
expression levels of receptors for bacterial virulence factors can
determine themode andmanner of host immune response (Pea-
cock et al. 2003; Johannessen, Sollid and Hanssen 2012; Weiden-
maier, Goerke and Wolz 2012). Staphylococcus aureus, like many
other pathogens, evolved various ways to induce tolerance or
evade eradication by the host immune system. A wide range of
bacterial proteins has been identified that interfere with the in-
duction of proinflammatory responses (Gordon and Lowy 2008;
Miller and Diep 2008; Krishna and Miller 2012). Importantly,
these antiinflammatory virulence factors targeting NF-κB and
MAKP pathways can be served as templates in the development
of therapeutic agents to prevent, dampen, or treat chronic in-
flammatory conditions caused by dysregulation of the very same
signaling pathways. Thus unraveling of the underlying mech-
anism of staphylococcal survival in host, besides a basic un-
derstanding of infection process, promotes two important fields
of drug development: discovery of novel target points for an-
timicrobial therapy and new immune-modifying applications to
fight against inflammatory diseases.
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