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Neutrophils are the most abundant leukocytes in circulation and
provide a primary innate immune defense function against bacte-
rial pathogens before development of a specificimmune response.
These specialized phagocytes are short lived (12-24 hours) and
continuously replenished from bone marrow. We found that if the
host is overwhelmed by a high inoculum of Listeria monocyto-
genes, neutrophils are depleted despite high granulocyte-colony
stimulating factor induction. In contrast to a low-dose innocuous L.
monocytogenes infection, high-dose Listeria challenge blocks neu-
trophil recruitment to infectious abscesses and bacterial prolifer-
ation is not controlled, resulting in lethal outcomes. Administering
synthetic TLR2-ligand or heat-killed bacteria during the innocuous
L. monocytogenes infection reproduced these effects, once again
leading to overwhelming bacterial propagation. The same stimuli
also severely aggravated Salmonella typhimurium, Staphylococcus
aureus, and Streptococcus pyogenes systemic infection. These data
implicate systemic innate immune stimulation as a mechanism of
bone marrow neutrophil exhaustion which negatively influences
the outcome of bacterial infections.
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N eutrophils provide an important early defense mechanism
against infection. Under normal circumstances, only a small
fraction of the neutrophil pool are found in circulation (<2% of
65 million in the mouse), whereas most are stored in the bone
marrow (BM) (1, 2). In response to infection, BM neutrophils are
released and control invading pathogens in the periphery via
phagocytosis, oxidative agents, enzymatic digestion, and forma-
tion of extracellular traps. Neutrophils die in the process of
bacterial killing (3), and granulocyte-colony stimulating factor
(G-CSF) is up-regulated to induce granulopoiesis and to replen-
ish the BM reservoir (4).

Interruption of the neutrophil supply is detrimental to the
control of bacterial infections (5, 6). Absence of circulating
neutrophils or, conversely, abnormal elevation of their numbers,
can each be indicators of bacterial sepsis (7). How these appar-
ently contradictory clinical signs correlate to underlying events
within the BM neutrophil reservoir remains poorly understood.
The mechanisms responsible for the high mortality of sepsis are
also unclear, although generally systemic over-activation of
immune response mechanisms coupled with a failure to fully
eradicate bacteria, are blamed (8, 9).

In the present work, we used varying doses of Listeria monocy-
togenes (L.m.) (10) to initiate an innocuous versus a lethal infection,
and studied the relationship between the inoculum size, neutrophil
kinetics, and host survival. Only a lethal dose of L.m. devastated
the BM neutrophil supply through excessive demand and accel-
erated cell death. Exploration of these results uncover a con-
nection between systemic innate stimulation as exemplified by
Toll-like receptor 2 (TLR2) activation, BM neutrophil exhaus-
tion, and mortality, further corroborated through pharmacologic
and genetic manipulations and systemic challenge with different
bacterial species. Taken together, our data connect innate immune
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activation to BM neutrophil exhaustion, which we identify as a
critical risk factor for fulminant bacterial infections and fatal
outcomes.

Results

Bone Marrow Neutrophils Are Not Depleted During Low-Dose L.m.
Infection. The neutrophil response in inbred C57BL/6 wild-type
(WT) mice to an innocuous, low-dose infection with 10° colony
forming units (cfu) L.m. i.v. (=1/10 of the median lethal dose,
LDsj) was analyzed. Visualization of the time course of this
infection by bacterial counts in spleens and livers showed a rise
of bacterial loads until day 3 before these fell below the detection
limit at day 9 (Fig. 14). Of the three hematologic parameters
measured, neither blood nor BM neutrophils nor BM macro-
phages (11, 12) showed significant alterations during the first 5
days of the infection. Only at days 7 and 9 were BM neutrophils
found to be elevated (Fig. 1B). All low-dose—infected animals
survived for at least 30 days (Fig. 1C). Low-dose infection
stimulated granulopoiesis, and G-CSF levels rose to a maximum
of ~10 ng/ml between days 1 and 2, before returning to
undetectable levels by day 7 (Fig. 1D).

Depletion of BM Neutrophils During Lethal L.m. Infection. To contrast
these observations to a lethal high-dose infection with the same
bacterium, mice were challenged with a dose of 10° cfu L.m. i.v.
(=10 times LDs). This high-dose infection caused an acceler-
ated decrease in BM neutrophils, until by day 3 less than 10% of
the baseline number remained (Fig. 1E). Neutrophil depletion
was not averted by the strong and immediate induction of G-CSF
(Fig. 1D). BM macrophage numbers showed little or no change,
suggesting that depletion was granulocyte-specific (Fig. 1E).
Splenic and hepatic bacterial counts (Fig. 1F) showed a signif-
icant negative correlation with mean BM neutrophil numbers in
both low- and high-dose infection [supporting information (SI)
Figs. S1 A and B]. Over the course of 3 days, the bacterial numbers
in spleen, liver, and BM kept rising steadily, and animals developed
bacteremia (Fig. 1F). By day 3, nearly half the mice had developed
end-stage disease, and the remaining animals had to be taken out
of the experiment by day 5 because of terminal illness (Fig. 1C).

BM Exhaustion Coincides with Halting Neutrophil Infiltration into
Bacterial Lesions. Histological analysis of WT livers and spleens
revealed distinct immune cell infiltration kinetics in response to
low- or high-dose L.m. infection. During low-dose infection,
strong hepatic (Fig. 24) and splenic (Fig. 2B) neutrophil infil-
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Fig. 1. Transient versus terminal depletion of BM neutrophils by low- or high-dose Listeria monocytogenes (L.m.) infection. (A) L.m. counts in spleen, liver, BM
(cfu/femur), and blood (cfu/ul) at the respective timepoints (n = 4 per timepoint, mean + SEM, one of two experiments with similar outcomes). (B) Ly6GTCD11b*
(neutrophils) and CD11b*Ly6G~ (macrophages) cellsin BM and Ly6G*CD11b* (neutrophils) in blood at the respective days after low-dose L.m. infection (103 cfu)
(n = 3-4 per time point, mean =+ SEM, one of two experiments with similar outcomes) (C) Survival of WT mice after infection with low-dose (103 cfu) or high-dose
(103 cfu) L.m. i.v. (n = 5-10/group) (D) Serum concentration of G-CSF after infection low-dose (103 cfu) or high-dose (105 cfu) L.m. i.v. (n = 3-4 per time point,
mean =+ SEM) (E) Ly6G*CD11b™ (neutrophils) and CD11b"Ly6G~ (macrophages) cells in BM and Ly6G*CD11b™ (neutrophils) in blood at the respective days after
infection with 105 cfu L.m. (n = 3-4 per time point, mean = SEM, one of two experiments with similar outcomes) (F) Bacterial counts in spleen, liver, BM
(cfu/femur), and blood (cfu/ul) at the respective timepoints (n = 4 per timepoint, mean = SEM, one of two experiments with similar outcome)

tration occurred between days 3 and 5 but reverted to near-basal
levels by day 9, when bacteria were fully cleared from the organs
(Fig. 1A4). Over the course of both low- and high-dose infections,
F4/80-staining intensity of splenic macrophages decreased slightly,
consistent with cellular activation (13), but macrophage numbers
and distribution patterns did not change noticeably (Fig. S2 B and
D). In the liver, F4/80" Kupffer cells and macrophages started to
infiltrate the abscesses from day 3-4 onward (Fig. S2 4 and C).
Levels of L.m. remained under the immunohistochemically detect-
able limit for the entire duration of the low-dose infection in both
liver and spleen (Fig. S2 4 and B). In contrast, in high-dose L.m.
infection, dense neutrophil infiltrates were observed in liver and
spleen as early as day 1 (Fig. 2 C and D), 2 days earlier than during
low-dose infection (Fig. 2 A and B). However, by day 3, neutrophils
had all but disappeared from the organs, coinciding with the
exhaustion of BM neutrophils (Fig. 1E), peak L.m. organ counts,
histologically detectable bacteria (Fig. S2 C and D), and bacteremia
(Fig. 1F). Hepatocytes stained especially strongly for dense clusters
of bacteria by day 3 (Fig. S2C), when terminal illness set in (Fig. 1C),
whereas in the spleen a more diffuse L.m. distribution pattern was
observed (Fig. S2D).

Lethal Bacterial Infection Causes Death of BM Neutrophils. To de-
termine the degree to which L.m. infection caused leukocyte
activation, expression levels of early activation marker CD11b
(14) on BM and blood neutrophils were measured. Both high-
and low-dose inocula caused neutrophil activation in BM (Fig. 3
A and B). However, whereas activation levels during low-dose
infection peaked between days 3 and 5 and reverted to baseline
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levels (Fig. 34), neutrophil activation in high-dose—infected mice
kept increasing (Fig. 3B) until end-stage disease set in (Fig. 1C).

As activated neutrophils limit their potential for immunopa-
thology by eventually undergoing apoptosis (15), Annexin-V
stainings were performed. In the blood, virtually no dead
neutrophils were found at any time (not shown). Strikingly,
however, although the levels of dead BM neutrophil remained
<10% in the low-dose—infected animals (Fig. 3C), high-dose
infection resulted in 50% and 70% of dead BM neutrophils on
days 2 and 3, respectively (Fig. 3D).

Innate Immune Activation Triggers BM Neutrophil Exhaustion. To
determine whether the poor outcome of high-dose infection was
caused solely by the higher replication potential of the larger
inoculum, or whether it could also be caused by nonproliferative
bacterial constituents, heat-killed L.m. were administrated a day
after low-dose infection. At day 3, bacterial counts in liver and
spleen were one to two orders of magnitude higher in animals
that received heat-killed bacteria (Fig. S34), providing a first
indication that non-proliferative bacterial constituents might
play a role in granulocyte depletion.

Lipopeptides and lipoproteins of Gram-positive bacteria such
as L.m. can be recognized by the pattern recognition receptor
TLR2 to activate the host innate immune response (16). There-
fore, we administered 100 ug of the synthetic bacterial lipopep-
tide and TLR2 ligand Pam2Cys intravenously into WT or tr2~/~
mice to test whether TLR2 (17) would provide a route by which
inert bacterial constituents could induce granulocyte depletion.
Although they remained free of symptoms, strikingly, Pam2Cys-
treated WT mice showed a >80% BM neutrophil reduction
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Fig. 2.  Histological time course of neutrophils in livers and spleens during

infection with low- or high-dose L.m. Livers and spleens taken at the indicated
time points were stained immunohistochemically for presence of GR-1* cells, in
(A) and (B) during infection with 103 cfu L.m. and in (C) and (D) with 10° cfu L.m.

compared with r2~/~ mice and WT controls (Fig. 4 A and B).
Moreover, and in contrast to other studies correlating BM
neutrophils with viral and bacterial infection (18), TLR2-
mediated neutrophil depletion was independent of interferon
(IFN) type I (Fig. S3B). Up to 40% of BM neutrophils under-
went apoptosis in WT mice but not in #r2~/~ controls (Fig. 4C).
To investigate whether, in addition to apoptosis, accelerated
emigration contributed to the Pam2Cys-induced BM neutrophil
reduction, neutrophil numbers in the blood and major filtering
organs (liver and spleen) were determined. Although no signif-
icant changes in either viable or apoptotic granulocytes were
observed in liver or blood (Fig. S3 C and D) 6-fold more
apoptotic neutrophils accumulated in spleens (19) of Pam2Cys-
treated WT animals than in those of PBS-treated controls (Fig.
4D). In addition, only BM neutrophils of WT mice showed
up-regulation of early activation marker CD11b (Fig. 4E) and
demonstrated respiratory burst activity (Fig. 4F) in response to
Pam2Cys. Interestingly, #72~/~ mice showed heightened neutro-
phil activation even in the naive state, which has not yet been
analyzed further. To determine whether this phenomenon could
also be induced by other TLRs, we administered the prototypic
TLR4 ligand LPS to C57BL/6 mice and found a similar rate of
dead neutrophils as well as numerical reduction in the bone
marrow (not shown).

Systemic TLR2 Activation Converts Low-Dose Bacterial Infection into
Lethal Sepsis. To investigate the influence of specific TLR2
engagement on an innocuous infection, WT mice or #r27/~
controls were infected with low-dose L.m. and treated with
Pam2Cys iv. (Fig. 54). Although 2=/~ mice and WT PBS
controls remained free of disease, WT animals treated with
Pam2Cys became terminally ill between days 3 and 5 (Fig. 5B),
reminiscent of non-Pam2Cys-treated but high-dose—infected
animals (Fig. 1C). At day 3, organs of Pam2Cys treated WT
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Fig. 3. Activation and death of neutrophils during infection with low- and
high-dose L.m. (A and B) Mean fluorescence intensity of CD11b on the surface
of Ly6G*CD11b* (neutrophils) and CD11b*Ly6G~ (macrophages) cells in BM
and blood after infection with 103 cfu (A) or 10° cfu L.m. (B) (n = 3-4, mean =+
SEM, one of two experiments with similar outcomes) (C and D) Percentage of
Annexin-V* neutrophils, macrophages, and Ly6G~CD11b ™ cells (other cells) in
BM after infection with 103 cfu (C) or 105 cfu (D) L.m. (n = 3-4, mean + SEM,
one of two experiments with similar outcomes)

animals showed one to two orders of magnitude higher bacterial
counts than their PBS controls, whereas #/r2~/~ animals were
resistant to the aggravating effects of Pam2Cys (Fig. 5C).
High-dose—infected, Pam2Cys-treated WT mice had fewer neu-
trophils left in their bone marrow and blood (not shown) at day
3 compared with PBS and #r27/~ controls (Fig. 5D). Treatment
with granulocyte-depleting a-GR1 antibody led to the same
constellation of findings as with Pam2Cys treatment (20, 21)
(Fig. 5 C and D). Histologically, livers of #r27/~ mice and WT
PBS controls revealed densely packed infiltrating neutrophils at
day 3 of infection, but only few bacteria. In contrast, Pam2Cys-
treated WT animals showed multiple L.m. foci that were nearly
devoid of infiltrating neutrophils (Fig. SE).

Finally, we determined whether systemic TLR2 activation and
BM granulocyte depletion would have similar effects in other
bacterial infections. Pam2Cys administration significantly in-
creased bacterial counts by one to two orders of magnitude in
multiple organs after systemic infection with the important
Gram-negative pathogen Salmonella typhimurium (liver, spleen)
as well as the leading Gram-positive pathogens Streptococcus
pyogenes (blood, spleen, liver) and Staphylococcus aureus (blood,
spleen, brain) (Fig. 5 F-H). Thus TLR2 activation was found
capable of aggravating the severity of systemic infection by
multiple pathogens.

Discussion

It is generally believed that immune over-activation is a major
contributor to the lethality of sepsis (22, 23). High cytokine
concentrations (24) as seen in the systemic inflammatory reac-
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SEM, n = 3-5 animals/group, one of two experiments with similar outcomes).
(E) Mean fluorescence intensity of CD11b surface staining on BM neutrophils
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animals/group, one of two experiments with similar outcomes). (F) Mean
fluorescence intensity of DHR123 staining in BM neutrophils 24 hours after
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tion syndrome SIRS (considered a cytokine storm subtype) (7)
have been associated with high mortality during sustained
bacteremia. Furthermore, elevated levels of specific cytokines,
e.g., type I IFN, have been linked to neutropenia (18), which by
itself is an important predictor of poor outcomes of systemic
bacterial infections (25). Nonetheless, specific underlying mech-
anisms of lethal outcomes of bacterial infections remain poorly
understood (8), as perhaps best illustrated by the fact that
therapies seeking to down-modulate key inflammatory media-
tors (26) or to boost granulopoiesis (27) during sepsis have
generally not proved as successful as hoped.

Our data illustrate that the proliferative potential of the
bacterial inoculum (i.e., the infectious dose) is merely one factor
in lethal sepsis. The innate immune status of the host is another.
Excessive innate activation through TLR2 can have a substan-
tially detrimental effect on granulocyte-mediated antibacterial
resistance. The systemic presence of bacterial compounds de-
riving from the infection, but also TLR2-triggering factors
unrelated to the infection, were found to exhaust the BM
neutrophil reservoir through a combination of increased demand
and increased cell death. Infection-independent innate immune
triggering through TLR2 aggravated a normally innocuous in-
fection with L.m., S. aureus, S. pyogenes, or S. typhimurium to
stages that are, under typical experimental conditions, only
reached using lethal challenge dosages of these bacteria. Al-
though out of the scope of the research presented here, we
suggest that this mechanism of aggravating otherwise innocuous
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Fig. 5. Systemic TLR2 ligation leads to impaired neutrophil infiltration,

uncontrolled bacterial propagation, and host death. (A) Experimental proto-
col. (B) Survival curve of t/r2~/~ or WT mice infected with 103 cfu L.m. with or
without administration of 100 ug Pam2Cys 24 hours after infection. (n =
5-11/group, two experiments) (C) Bacterial counts at day 3 of infection with
103 cfu L.m. with or without administration of 100 ug Pam2Cys 24 hours after
infection. Grey bars show WT controls that had received 100 ug o-GR1 anti-
body (clone NimpR14) at 24 hours after infection (mean + SEM, n = 3 per
group, one of two experiments shown with similar outcomes). (D) BM neu-
trophils at day 3 of the L.m. infection (mean = SEM, n = 3, one of two
experiments with similar outcomes). (E) Immunohistochemistry of livers at day
3 of Listeria infection stained with anti-L.m. serum (left row) or a-GR1 (neu-
trophils, right row). Conditions shown are WT PBS (1), WT Pam2Cys (2), t/r2~/~
PBS (3), t/Ir2~/= Pam2Cys (4), WT a-GR1 with hematoxylin and eosin-stained
inlet (5) to confirm specific staining and absence of neutrophils. (F) Bacterial
counts at day 3 of infection with 4 X 10* cfu Salmonella typhimurium with or
without administration of 100 ng Pam2Cys 24 hours after infection (mean =
SEM, n = 5/group). (G) Bacterial counts at day 3 of infection with 5 X 10° cfu
Streptococcus pyogenes with or without administration of 100 g Pam2Cys 24
hours after infection (mean = SEM, n = 10/group, two experiments pooled).
(H) Bacterial counts at day 3 of infection with 5 X 108 cfu Staphylococcus
aureus with or without administration of 100 ug Pam2Cys 24 hours after
infection (mean + SEM, n = 10 per group, two experiments pooled).

infections might also play a role in the high rates of secondary
sepsis in patients whose innate immune system is stimulated
during trauma, operative procedures, or burn injury.

In an earlier report, we showed how virus infection depleted
BM neutrophils in a IFN type I-dependent manner, and wors-
ened the outcome of a bacterial superinfection (18). In contrast
to that finding, we describe here a type I IFN-independent
mechanism of BM neutrophil depletion, as IFN I receptor—
deficient mice showed no resistance to the BM depletion in
response to Pam2Cys-treatment.

Recombinant G-CSF has been used to treat sepsis, under the
premise that autologous production of G-CSF would be insuf-
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ficient (27, 28). Although such treatment might be beneficial if
normal production were impaired, G-CSF levels did not seem to
be a limiting factor in WT mice (Fig. 1D). In fact, we found that
G-CSF secretion correlated inversely with the size of the BM
neutrophil reserve. Apparently, even strongly up-regulated G-
CSF levels remained ineffective in generating the neutrophil
quantity required for survival in the face of an overwhelming
bacterial infection. This could explain the failure of therapeutic
G-CSF or GM-CSF during sepsis (27). Still, given the innocuous
effects of general G-CSF treatment, pre-emptive induction of
granulopoiesis (29), for example, before elective surgery, might
be beneficial by providing a narrow therapeutic window of
elevated resistance.

Taken together, without contradicting other findings, our
results shed light on the poorly understood mechanisms behind
lethal sepsis, demonstrating that TLR-mediated innate immune
stimulation worsens the outcome of bacterial infection by ex-
hausting the BM neutrophil supply.

Materials and Methods

Mice. Specific pathogen free (SPF) laboratory mice were obtained from the
institute of Labortierkunde of the veterinary facility of the University of
Zurich. Experiments were performed according to Swiss veterinary law and
institutional guidelines. C57BL/6 (WT) mice, t/r2~/~ and ifnar~/~ mice on
C57BL/6 genetic background were used. For staphylococcal and streptococcal
infections, WT C57BL/6 mice were obtained from Charles River Laboratories,
and experiments performed under protocols of the Committee on the Use and
Care of Animals at UCSD using accepted veterinary standards.

Infections. Listeria monocytogenes (L.m.) strain 10403S was grown overnight in
brain—heart infusion broth or thawed from frozen aliquots, washed two times in
phosphate-buffered saline (PBS), and injected i.v. in 200 ul into the tail vein. A
103-cfu quantity of L.m. i.v. (/19 LDso) was used as low-dose infection, and 10° cfu
L.m. i.v. as high-dose infection. Heat-killed L.m. were 108 cfu L.m. heated at 70 °C
for 1 hour and administrated i.v. Salmonella typhimurium (S.t.) was grown
overnight in LB medium and washed in PBS, and 4 x 10 cfu injected i.v. in 200 pl.
Staphylococcus aureus Newman ATCC 25904 and Streptococcus pyogenes M1T1
strain 5448 were grown to logarithmic phase and 5 X 108 cfu were injected i.v.,
respectively. Administered lipopeptide was Pam2Cys, a Mycoplasma fermentans—
derived lipopeptide consisting of palmitoyl side chains acid and a cysteine,
S-(2,3-bis(palmitoyloxy)propyl)cysteine (30).
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Bacterial Counts. Bacterial counts were determined in homogenized halves of
spleen, the left lobe of the liver, the brain, 100 ul of flushed BM (3 ml PBS per
femur), or 50 ul of PBL in PBS with serial dilutions plated on brain-heart infusion
(L.m.), blood (S.t.) agar, or Todd-Hewitt agar plates (S. aureus and S. pyogenes).

BM Aspirates and Culture. BM cells were flushed with PBS from the femur and
were stained for fluorescence-activated cell sorting (FACS) analysis or cultured
in RPMI with 10% fetal calf serum.

FACS and Antibodies. a-Ly6G, GR1 (Hybridoma RB6 8C5), CD11b, Annexin-V,
and 7-Amino-Actinomycin-D (7-AAD) were obtained from BD (Basel). Cells
expressing Ly6G/GR1 and CD11b are termed polymorphnuclear leucocytes
(PMN). FSC/SSC gates were used to exclude debris in organ homogenates.
Dihydrorhodamine 123 (DHR, Sigma) was used for measuring NADPH oxidase
activity by measuring cellular fluorescence in FL1 channel (emission 534 nm).
A fixed number of fluoroescent APC beads were used to measure cell number
per sample volume and have been described before (31). a-GR1 (NimpR14)
hybridoma was a generous gift from Tacchini-Cottier (Epalinges, Switzerland)
(20). Macrophages were defined as CD11b*Ly6G~ cells. Neutrophils were
defined as Ly6GTCD11b* cells.

Histology. Histological samples were snap-frozen in Hanks medium and
stained with anti-L.m. rabbit serum (a gift from Prof J. Bille, Lausanne), Gr-1
(PharMingen) or F4/80 (BM8, BMA) antibodies. Staining was developed using
a goat anti-rat antibody (Caltag Laboratories) or goat anti-rabbit (Jackson
Immuno Research) and an alkaline phosphatase-coupled donkey anti-goat
antibody (Jackson Immuno Research) with naphthol AS-BI (6-bromo-2-
hydroxy-3-naphtholic acid 2-methoxy anilide) phosphate and new fuchsin as
a substrate. The presence of alkaline phosphatase activity yielded a red
reaction product. The sections were counterstained with hemalum.

Determination of Cytokine Production. Serum G-CSF was measured by enzyme-
linked immunosorbent assay (R&D Systems, Minneapolis, MN).

Statistical Analysis. In all figures, unpaired two-sided t test or one-way analysis
of variance were used where applicable. Values of P > 0.05 were considered
nonsignificant. P values are as follows: * P < 0.05, ** for P < 0.01, *** for
P < 0.001.
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