
CELL DEATH AND DISEASE

Cell death during sepsis: integration of disintegration
in the inflammatory response to overwhelming infection

Fabiano Pinheiro da Silva Æ Victor Nizet

Published online: 7 February 2009

� The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Sepsis is a major health problem and a leading

cause of death worldwide. In recent years, a crescendo of

attention has been directed to the mechanisms of cell death

that develop during this disease, since these are viewed as

important contributors to the proinflammatory and anti-

inflammatory responses associated with poor outcome.

Here we discuss mechanisms of cell death evident severe

bacterial infection and sepsis including necrosis, apoptosis,

pyroptosis, and extracellular trap-associated neutrophil

death, with a particular emphasis on lymphocyte apoptosis

and its contribution to the immunosuppressed phenotype of

late sepsis. Individual bacterial pathogens express viru-

lence factors that modulate cell death pathways and

influence the sepsis phenotype. A greater knowledge of cell

death pathways in sepsis informs the potential for future

therapies designed to ameliorate immune dysfunction in

this syndrome.
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Introduction

Sepsis remains the leading cause of death in intensive care

units (ICUs), despite remarkable advances in treatment of

critical illness and outstanding progress in all other aspects

of ICU medicine [1]. Current mortality rates attributable to

sepsis are in the 30–40% range and increase to *70% in

specific patient groups such as the elderly and those with

chronic underlying diseases. These disappointing statistics

reflect the multiplicity of agonistic and antagonist inter-

actions between bacterial pathogens and host cells, yielding

complex inflammatory responses during the course of

disease that are far from completely understood. Indeed,

only by probing deeper into the molecular and cellular

mechanisms that trigger the clinical features observed in

sepsis patients can we anticipate the development of more

effective medicines and improved survival.

Sepsis, according to the actual consensus, is a disease

defined by clinical criteria. These criteria were defined by

specialists in the field, who joined in 1991 for a meeting

organized by the ‘‘American College of Chest Physicians’’

and by the ‘‘Society of Critical Care Medicine’’, aimed to

standardize the nomenclature, which was becoming con-

fusing, due to the indiscriminate use of terms as bacteremia,

septicemia and sepsis [2]. The currently accepted nomen-

clature defines sepsis as a systemic inflammatory response

syndrome (SIRS) due to infection and characterized by the

presence of at least two parameters: hypothermia or fever,

tachycardia, leukocytosis or leukopenia, or more than 10%

immature leukocytes in the blood. ‘‘Severe sepsis’’ is rec-

ognized by the presence of organ dysfunction plus evidence

of blood perfusion abnormalities (e.g., lactic acidosis, oli-

guria, altered consciousness) and episodes of hypotension,

while ‘‘septic shock’’ exists when blood perfusion abnor-

malities are not responsive to vigorous fluid administration.
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Septic shock typically leads to multiple organ dysfunction

syndrome (MODS), where failure of three or more organ

systems develops in the critically ill patient and homeostasis

cannot be maintained without life support techniques.

In the 1980s, prevailing thought attributed the high

mortality of sepsis to an explosive and overwhelming

systemic inflammatory response. In these models, bacterial

components would hyper-activate the immune system,

inducing an inflammatory response so potent that it could

eventually lead the host to die. This hypothesis inspired

several clinical trials aiming to down-regulate and control

inflammation, e.g., with high dose corticosteroids or anti-

cytokine agents. The disappointing results of such trials,

indeed in some cases mortality was even increased by the

anti-inflammatory strategies, revealed that the proposed

concept was wrong, or at least incomplete, and certainly

underappreciated the fact that sepsis is a heterogeneous

disease, affecting both young and the elderly, as well as

patients with different comorbidities [3].

Roger Bone, in the 1990s, trying to explain why those

early clinical trials had failed, proposed the concept of the

‘‘Compensatory Antagonistic Response Syndrome

(CARS)’’, where he defended the idea that after the initial

explosive inflammatory response, an antagonistic anti-

inflammatory response would take place, leading sepsis

patients to succumb due to secondary infections or become

unresponsiveness to treatment interventions [4, 5] (Fig. 1).

Indeed, septic patients possess many signs of deficient

immune response, including ineffective antigen presenta-

tion, T-lymphocyte hyporesponsiveness, and decreased

Th1 cell proliferation; the term ‘‘immunoparalysis’’ is

commonly applied to this state of immune anergy observed

in late sepsis. As will be outlined in detail, the phenotype of

the septic patient is also characterized by increased num-

bers of apoptotic cells—mainly lymphocytes, dendritic

cells and epithelial cells. Since it is well established the

presence of apoptotic cells cause lymphocytes and mono-

cytes to significantly lesser amounts of pro-inflammatory

cytokines, the processes of cell death and immunosup-

pression are intricately related in sepsis.

Although some have proposed that organ failure and

immunosuppression in sepsis are a direct consequence of

apoptotic cell death, the diversity and complexity of the

clinical syndrome often make it difficult to ascertain which

phenomenon occurs first. Recent years have witnessed an

explosion in information regarding cell death mechanisms,

including they way they are induced and manipulated by

invasive bacterial pathogens. Here we will review some

key aspects of the tightly regulated pathways that govern

cell death decisions during the course of a septic insult. In

this context, an imprecision of the term immunoparalysis

can be appreciated, since apoptotic and counter-inflam-

matory pathways need to be continuously activated for the

perpetuation of this dynamic process.

Fundamental mechanisms of cell death relevant

to sepsis

Necrosis, apoptosis and autophagy

Dying cells can be necrotic, apoptotic (type-1 programmed

cell death), or autophagic (type-2 programmed cell death);

the latter phenomenon is often reversible. During necrosis,

cells exhibit swollen cytoplasm, disorganized organelle

structures, ruptured membranes and a lytic appearance to

their nuclei (karyolysis) [6]. In contrast, a hallmark features

of the apoptotic cell is chromatin condensation, which later

proceeds to fragmented nuclei (karyorrhexis) and forma-

tion of apoptotic bodies, often in the setting of an intact

plasma membrane and organelles. Autophagy is a process

that enables the cell to degrade self components in order to

recycle or eliminate excessive cytoplasmic content; in

critical situations like starvation, autophagy can preserve

cell life. Autophagy is characterized by formation of

autophagosomes—large double membrane vesicles that

engulf cytosol and organelles. Autophagosomes subse-

quently fuse with lysosomes, and are degraded without

further cell damage nor alarm signals [7]. It has been

suggested that once a cell’s autophagic capacity is over-

whelmed, apoptosis is triggered.

The three different modes of cell death appear to be

related mechanistically. The mitochondria, for example,

can be a promoter of autophagy, apoptosis or necrosis. The

resultant cell death pathway depends on the magnitude of

mitochondrial membrane permeability triggered during

Fig. 1 The balance of inflammation, and immunosuppression during

sepsis. In general, at an earlier stage, patients develop and

overwhelming inflammatory response (SIRS). Later, however, septic

patients show signs of anergy or immunosuppression with an

increased incidence of secondary infections (CARS). The elderly

and patients with comorbidities shift faster towart CARS, while

younger patients, generally, can present with prolonged SIRS. Both

conditions can culminate in multiple organ dysfuntion syndrome

(MODS). SIRS Systemic inflammatory response syndrome; CARS
compensatory antagonistic response syndrome
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stress by different factors, such as calcium ions, inorganic

phosphate and free fatty acids. Perturbations in perme-

ability can lead to ATP depletion and swelling or rupture of

the mitochondrial outer membrane. If permeability changes

are mild, an autophagy program can be summoned, recy-

cling the mitochondria before further damage ensues. If

cytochrome c and other pro-apoptotic molecules, like

apoptosis inducer-factor (AIF), second mitochondria-

derived activator of caspases/direct IAP-binding protein

(Smac/Diablo) and pro-caspases-2, -3, -8 and -9 reach the

cytosol, pathways that lead to apoptosis are activated. If

ATP drops precipitously, however, leading to plasma

membrane failure and leakage of intracellular enzymes,

necrosis occurs [8].

The inflammatory response to necrosis

The inflammatory response to necrosis remains a poorly

understood phenomenon. Injured cells release a variety

danger signals—some of these molecules are recognized

by receptors, stimulating the production of pro-inflamma-

tory mediators. The response mechanisms triggered by

necrotic cell death are particularly complex in sepsis. Since

even sterile cell death induces inflammation, a combination

of bacterial stimuli and host stimuli, even those elicited in

sterile sites, may be implicated in the inflammatory

response during a septic event. Furthermore, over time, if

apoptotic cells are not rapidly ingested by phagocytes, they

can undergo a process called secondary necrosis, releasing

their intracellular contents and inducing inflammation [9].

Although it is possible that cytokines might be released

directly upon cell death, only certain types of cells store

these molecules, so it is likely that other molecular inter-

mediates are also pivotal in this process. Many candidates

have been proposed, including HMGB1, uric acid, heat

shock proteins, DNA-chromatin complexes, antimicrobial

peptides, and others. HMGB1 is a nuclear protein expressed

constitutively, binding to DNA and regulating gene tran-

scription. It is released by necrotic cells, but not apoptotic

cells [10], and has been shown to stimulate TNFa secretion

by monocytes. While anti-HMGB1 antibodies injected into

mice were found to reduce inflammation in an animal model

of drug-induced hepatitis [10], necrotic cells lacking

HMGB1 are still capable of inducing inflammation [11].

Uric acid is an intracellular molecule whose biologically

active form, monosodium urate (MSU) microcrystals, is

generated upon release to the cytosolic compartment. MSU

has recently been identified as a strong inducer of IL-1b
secretion [12]. DNA-chromatin complexes [13] and heat

shock proteins [14, 15], have been shown to stimulate pro-

inflamatory cytokines production in certain conditions, and

cationic antimicrobial peptides [16] and various purine, such

as adenosine and ATP [17], also have chemotactic activity.

Specific receptors involved in amplifying the host

inflammatory response in response to cell necrotic are

beginning to be identified. Toll-like receptor 3 (TLR-3),

best recognized as a receptor for viral double-stranded

RNA, allows macrophages to recognize byproducts of

necrotic (but not apoptotic) neutrophils, thereby stimulat-

ing the generation of pro-inflammatory cytokines [18].

Another recent example of a receptor involved in this

process is macrophage-inducible C-type lectin (Mincle),

which has been shown to sense nonhomeostatic cell death

and induce the production of proinflammatory cytokines,

driving neutrophils to damaged tissues [19].

Caspase-dependent apoptotic cell death

Apoptotic cell death holds particular importance in sepsis

because it affects immune cells, which are critical during

the course of infection. Regulation of cell death is an

essential aspect of the host response to infectious stress and

is therefore maintained under tight control; caspases are the

principle orchestrators of these decision points. Over a

dozen caspases have been identified and approximately

two-thirds have been suggested to function in apoptosis

[20]. Many caspases also participate in additional cellular

functions, as cytokine production, differentiation and pro-

liferation [21]. Caspases are cysteine proteases activated

during apoptotic death and are highly conserved through

evolution, from humans to insects. Synthesized as enzy-

matically inert zymogens, caspases are composed of three

domains: an N-terminal domain, a p20 and a p10 domain,

the mature enzyme being a heterotetramer containing two

p20/p10 heterodimers and two active sites. Activated by

proteolytic cleavage, initiator caspases start an avalanche

of increasing caspase activity by processing and activating

effector caspases [22]. Effector caspases then cleave and

inactivate vital cellular components, such as DNA syn-

thesis, cleavage and repair enzymes, MDM2 (an inhibitor

of p53), cell cycle regulators, cytoskeletal proteins and

protein kinase Cd [23, 24].

There are three pathways for induction of apoptotic cell

death that culminate in caspase activation: the death-

receptor pathway, the mitochondrial pathway and the

endoplasmic reticulum pathway. The death receptor path-

way (also known as extrinsic pathway) is initiated on the

plasma membrane by ligand binding, followed by receptor

oligomerization. Ligands include proteins as Fas and

TNFa. The best characterized death receptors are CD95

(Fas or ApoI) and TNFRI (p55 or CD120a) [25]. Signaling

by some death receptors, like TNFRI, also mediates dif-

ferent biological outcomes, like inflammation, depending

on cell type, genetic and environmental factors [26]. Once

Fas (CD95) aggregates, it can recruits FAS-associated

death domains (FADD) to form membrane-bound
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complexes. These complexes recruit procaspase-8, the low

intrinsic protease activity of this enzyme being considered

enough to allow the various molecules recruited to the

same site to activate each other, ultimately leading to

caspase-3 activation and cell death. TNFRI oligomeriza-

tion, however, initially recruits RIP1, TRADD, TRAF2 and

cIAP1 to form complex I, which tranduces signals leading

to NF-jB translocation to the nucleus. At later time points,

RIP1, TRADD and TRAF2 dissociate and TNFRI recruits

FADD and caspase-8 to form complex II, which induce

apoptotic cell death [26] (Fig. 2).

The mitochondrial pathway is triggered by cell stress,

which leads to activation of proapoptotic members of the

Bcl-2 family, such as Bim, Noxa, Puma, Bid and Bad.

These events, in turn, sequestrate antiapoptotic Bcl-2

family members, including Bcl-2, Mcl-1, Bcl-XL, thereby

enabling Bax and Bad oligomerization. The three dimen-

sional structure of Bcl-xL reveals structural similarities to

bacterial pore-forming toxins [27] and it has been shown

that Bcl-2, Bcl-xL and Bax can form ion channels [28, 29].

Indeed, activated Bax and Bad form pores in the mito-

chondrial membrane, inducing the release of pro-apoptotic

molecules from the mitochondria, such as cytochrome c,

Smac/Diablo, IAP (inhibitor of apoptosis protein), AIF

(apoptosis-inducing factor), Omi/HtrA2 and endonuclease

G. When cytochrome c enters in the cytosol, it is able to

activate caspase-9 and, in conjunction with APAF-1 and

dATP, form a complex called the apoptosome, which

finally activates caspase-3, reaching the point where the

extrinsic and intrinsic pathways of apoptosis converge.

Smac/Diablo promotes apoptosis indirectly, by binding to

and antagonizing members of the inhibitors of apoptosis

protein (IAP) family [30]. Apoptosis-inducing factor (AIF)

and endonuclease-G induce apoptosis in a caspase-inde-

pendent manner. On the other hand, many anti-apoptotic

molecules, such as Bcl-2, Bcl-X and Akt act to maintain

mitochondrial integrity, keeping the pro-apoptotic mole-

cules inside. Indeed, a number of proteins with structural

similarity to Bcl-2 have been discovered in the last decade.

The link between the extrinsic and intrinsic pathways

occurs when caspase-8 cleaves Bid to t-Bid, which is then

able to translocate into mitochondrial membranes and

promote oligomerization of Bax.

Endoplasmic reticulum (ER) stress may ultimately lead

to cell death. Endoplasmic stress is induced by accumula-

tion of unfolded protein aggregates or excessive protein

trafficking. The precise function of caspase-12 in this

pathway has been investigated with conflicting results [31,

32]. Caspase-12 activates caspases-3, -8 and -9, and is itself

activated by Ca?2 and oxidant stress [33]. Caspase-12-

deficient mice clear bacteria more efficiently than wild-type

controls and have an enhanced production of IL-1b and

IL-18, but not TNFa or IL-6. Thus, caspase-12 has been

proposed as a decoy caspase, blocking caspase-1 activation

and increasing survival in septic shock [34]. Further studies,

however, are necessary to establish the role of caspase-12 in

endoplasmic reticulum stress-mediated apoptosis.

Caspase-independent apoptotic cell death

Although caspases regulate most apoptotic processes, there

are some exceptions. In particular, cathepsins can be

Fig. 2 Apoptosis pathways in

sepsis. Representation of the

classical death-receptors,

mitochondrial, and endoplasmic

reticulum pathways.

Inflammasomes and lysosomal

pathways are also illustrated
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responsible for apoptosis in a caspase-independent manner

[35, 36]. Cathepsins are mostly cysteine proteases, even

though the term also includes serine proteases (cathepsins

A and G) and aspartic proteases (cathepsins D and E).

While caspases are localized predominantly in the cyto-

plasm, cathepsins reside inside the lysosomes. Cathepsins

are involved in a number of important processes, including

intracellular protein turnover, antigen processing, propro-

tein and hormone activation [37, 38]. Cathepsins are

synthesized as inactive proenzymes and when released into

the cytoplasm, they can catalyze enzymatic cleavage of

different vital substrates, inducing apoptotic cell death.

Cathepsins B, L and D have been found to play an

important role in the regulation of apoptosis [39]. Lyso-

somal permeabilization seems to be induced by different

mechanisms, depending on the cell type or stimulus.

Activation of TNFR-I, for example, results in production of

sphingosine, which induces lysosomal rupture [40]. Reac-

tive oxygen species damage have also been related to

lysosomal leakage [41]. Cathepsins may cause direct

mitochondrial damage, mediating cytochrome c release

and, in parallel, Bid and Bax activation. In addition,

cathepsins may catalyze the degradation of critical sub-

strates for cell survival. Importantly, while moderate

lysosomal rupture is associated to apoptotic cell death,

massive rupture was found to induce necrotic cell death

[42].

Bacterial pathogen influences on host cell death

pathways

Modulation of host cell apoptosis

Certain bacterial pathogens have developed strategies to

induce rapid apoptosis of host cells including phagocytic

cells, allowing them to reduce the release of pro-inflam-

matory signals and survive intracellular killing. A family of

pore-forming bacterial cytotoxins, including those elabo-

rated by the leading pathogens Streptococcus pyogenes,

Staphylcoccus aureus, and Listeria monocytogenes are one

class of agents triggering cell death phenotypes. For

example, S. pyogenes induces rapid, dose-dependent

apoptosis of neutrophils [43] and macrophages [44]. This

cell death pathway involves apoptotic caspases and

requires GAS internalization by the phagocyte. Analysis of

GAS virulence factor mutants, heterologous expression,

and purified toxin studies identify the pore-forming cyto-

lysin streptolysin ‘O’ (SLO) as necessary and sufficient for

the apoptosis-inducing phenotype. Ultrastructural evidence

of membrane remodeling, loss of mitochondrial depolar-

ization and cytochrome c release indicate a direct attack of

SLO on the mitochondria initiates the intrinsic apoptosis

pathway [44]. The net effect of the accelerated apoptosis

reduces bacterial killing, diminished pro-inflammatory

cytokine release, and increased bacterial virulence, while

caspase inhibition blocked macrophage apoptosis and

promoted bacterial clearance. GAS also elaborate the

potent heterocyclic peptide cytolysin streptolysin S (SLS)

[45] which can deplete host phagocytes and help promote

bacterial survival [46] through a proinflammatory, calpain-

dependent cell death pathway [47]

L. monocytogenes lyses the phagosomal membrane and

escapes into the cytosol to initiate an intracellular infection,

a process dependent on the pore-formin toxin listeriolysin

O (LLO). Subsequently, intracellular L. monocytogenes

induces LLO-dependent apoptosis in different cell types,

including hepatocytes [48], lymphocytes [49] and dendritic

cells [50]. LLO might insert into the mitochondrial mem-

brane, allowing release of cytochrome c or efflux of Ca2?,

activating calpain or caspases. S. aureus alpha-toxin,

structurally related to SLO and LLO, induces apoptosis in

epithelial cells through activation of both caspase-3 and

caspase-8 [51, 52].

Legionella pneumophila, the causative agent of

Legionnaire’s disease, induces caspase-3-dependent apop-

tosis in macrophages and alveolar epithelial cells, through

an effector delivered by the Dot/Icm type IV-like secretion

system [53]. In an immune evasion strategy targeting the

lysosomal pathway, the toxic metabolite pyocyanin, pro-

duced by P. aeruginosa, accelerates neutrophil apoptosis

by inducing lysosomal membrane rupture, mitochondrial

membrane permeabilization and caspase activation [54]. A

number of other Gram-negative bacterial pathogens pro-

duce the so-called cytolethal distending toxin (CDT),

which exhibits a DNAse 1-like activity that generates DNA

strand breaks and leads to G2 cell cycle arrest followed by

apoptosis in immune cells [55]. Finally, activation by

bacterial superantigen such as S. aureus enterotoxin B and

S. pyogenes can delete specific T and B cell populations

through increased apoptosis, contributing to the patho-

genesis of potentially fatal toxic shock syndrome [56–58].

Interestingly, there are certain situations were host cell

apoptosis may serve a beneficial function in immune

defense against infection. An example is the rapid apoptosis

of lung epithelial cells recognized during P. aeruginosa

pulmonary infection, which occurs through a Fas/Fas

ligand-dependent pathway [59]. Deficiency of Fas or Fas

ligand leads to reduced lung epithelial cell apoptosis in vitro

and in vivo, but these knockout mice are more susceptible to

development of fatal pseudomonal sepsis. Here death

receptor pathway-mediated apoptosis aids in P. auruginosa

clearance by segregation of the bacteria into apoptotic

bodies, which are rapidly phagocytosed by other cells, and

by Fas-mediated induction of cytokine and antimicrobial

peptide release, which can amplify the host immune
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response and effects extracellular killing of the pathogen

[59].

Pyroptosis and the inflammasome

Rapid macrophage death induced by Salmonella bacteria

resembles necrosis, but caspase-1 activation is intimately

related to this process, distinguishing it from any form of

accidental cell death [60]. This particular pro-inflammatory

programmed cell death, therefore, seems to be an alterna-

tive pathway for removing unwanted cells without aborting

the recruitment of additional cells or cellular functions

crucial to fighting infection. The term ‘‘pyroptosis’’ has

been proposed as a name for this process [61, 62]. Caspase-

1, as opposed to caspases -3, -8 and -9, is an inflammatory

caspase. This subclass of caspases involved in cytokines

processing and release, also includes caspases-4, -5, -11

and -12. Members of the NOD-receptor family, including

the NALPs, NAIP and IPAF, promote the assembly of

multiprotein complexes, called inflammasomes, which play

a key role in the activation of the inflammatory caspases.

These molecular platforms integrate cellular signals and

promote dimerization of inflammatory caspases, leading to

the formation of active proteins, the processing of IL-1b

and IL-18, and the initiation of additional signaling

pathways.

Caspase-11 has been suggested to act as an essential

activator of caspase-1 and as its obligate partner [63].

Indeed, caspase-11 deficient mice were unable to produce

IL-1b and IL-18 in response to LPS stimulation [64]. This

requirement, however, seems to be stimulus-specific, since

caspase-1 could be activated normally in the absence of

caspase-11 following Listeria infection [65]. The human

caspase-1 gene cluster contains caspase-1 and four addi-

tional genes encoding decoy caspases: cop, inca1, inca2

and iceberg, which presumably play a role in negatively

regulate processing of pro-IL-1b; these decoy receptors are

absent in the mouse genome [66].

The NALP inflammassomes are the best studied so far,

and two types have been identified. The NALP1 inflam-

masome is composed of NALP1, the adaptor protein ASC,

caspase-1 and caspase-5, whereas the NALP2/NALP3

inflammasome composed of NALP2 or NALP3, plus

CARDINAL, ASC and caspase-1, but not caspase-5 [67].

Each NALP inflammasome can sense both pathogen-rec-

ognition patterns and danger-associated molecular patterns

[68]. Low concentrations of potassium are associated with

inflammasome activation, independent of the primary

stimulus. Indeed, pore-forming bacterial toxins such as

Staphylococcus aureus a-toxin activate the inflammasome

in a potassium-dependent manner [69]. Franciscella and

Listeria, through a type III-secretion system or the pro-

duction of pore-forming toxins, are also able to gain entry

into the cytosol and activate caspase-1 [70]. Cytoplasmic

NALP inflamassomes can detect intracellular infection

through recognition of molecular patterns, cooperating

with Toll-like receptors (TLRs) pathways to generate an

appropriate response to pathogens or cellular stress [71].

Important intracellular crosstalk occurs between TLRs

and the inflammasomes. While the first stimulus (TLR-

dependent) seems important for generation of pro-IL-1b,

the second one allows caspase-1 activation and subsequent

proteolytic maturation and secretion of IL-1b. Salmonella

[72] and Legionella [73], however, induce assembly of the
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IPAF inflammasome, while the anthrax lethal toxin is

recognized by the NALP1 inflammasome [74]. Thus,

depending on the context, the activity of caspase-1 can

induce cytokine secretion or cell death [75]. Caspase-1

activation needs to be maintained under tight regulation to

control the magnitude of the inflammatory response,

avoiding its deleterious effects, such as occurs in sepsis.

Supporting this notion, it has been shown that both cas-

pase-1 and caspase-11 deficient mice are more resistant to

endotoxic shock than wild-type controls [64, 76].

Induction of neutrophil extracellular trap-associated

cell death

Neutrophil extracellular traps (NETs) are structures com-

posed of chromatin and granule proteins that are released

as the cell dies, allowing neutrophils to entrap and kill

microorganisms extracellularly ‘‘postmortem’’ [77]. In this

new form of cell death [78, 79], colloquially dubbed

‘‘NETosis’’, the nuclei of neutrophils lose their shape, the

nuclear membrane disintegrates, and the chromatin comes

into direct contact with the cytoplasm, thus homogenizing

with the granular proteins. Subsequently, the cell mem-

brane breaks and NETs are released, trapping bacteria in

tissues and in the circulation, particularly in the hepatic and

pulmonary sinusoids. Indeed, with their lower shear stress

and smaller cross-sectional areas, sinusoids appear to serve

as an optimal site for NETs formation. Moreover, platelet

binding to neutrophils is critical for neutrophil activation

and further NETs formation in these vessels [80, 81]. This

process of NETosis is distinct from necrosis or apoptosis,

and neither apoptosis nor necrosis induced NET formation.

NETs show disintegration of the nuclear envelope, mixing

of nuclear and cytoplasmic material, loss of internal

membranes and disappearance of cytoplasmic organelles;

yet in NETs, there is no DNA fragmentation, a hallmark of

apoptosis. Differently from the classical forms of cell

death, It remains unclear why only granular proteins, but

not cytoplasmic proteins, bind to NETs. Released NETs

bind fungi, Gram-positive and Gram-negative bacteria [82,

83]. NET formation depends on generation of reactive

oxygen species, and consequently patients with NADPH

oxidase deficiency (chronic granulomatous disease) exhibit

a deficiency in NET formation that may further contribute

to their predisposition to severe and chronic infections.

The presence and kinetics of free circulating neutrophil-

derived DNA/NETs appear to serve as a useful marker of

sepsis disease severity and multiple organ failure in

patients following multiple traumas [84]. Specific bacterial

products, such as the surface expressed M protein of S.

pyogenes, or host chemokines, such as IL-8, can induce the

production of NETs [85, 86]. It is now recognized that

certain leading leading bacterial pathogens, including

Streptococcus pneumoniae and S. pyogenes, express broad-

spectrum DNAses that have recently been shown to dis-

solve NETs, allowing pathogen to escape entrapment and

spread to produce systemic infection in the host into the

host [87–89].

Cell death influences on sepsis progression

and immune suppression

As described in the introduction, the initial hyperinflam-

matory response in the first 24–72 h of sepsis is followed

by a protracted state of immunosuppression where failure

to eradicate the inciting infection and secondary nosoco-

mial infections, often with opportunistic pathogens such as

Pseudomonas aeruginosa or Candida albicans, are fre-

quent clinical manifestations. Coincident with this state of

diminished immune function, autopsies of septic patients in

adult, pediatric and neonatal age groups have revealed

extensive apoptosis of splenic lymphocytes [90–92].

Lymphocyte apoptosis is also appreciated as an early event

in peripheral blood of septic patients, with the degree of

apoptosis correlating to the severity of sepsis symptoms,

and profound and persistent lymphopenia a harbinger of

poor outcome [93]. Lymphocyte populations depleted

through apoptosis in septic patients include B cells and

CD4 ? T cells [90]. Apoptotic loss of splenic follicular

dendritic cells is also apparent, however, macrophages

populations are notably preserved [94]. Corroborating the

human findings, in experimental cecal ligation and punc-

ture (CLP), a well-established model system for the study

of polymicrobial sepsis in the mouse, apoptosis is induced

in the spleen, thymus, lung and intestinal Peyer’s patches

[95, 96]. By analysis of responses in endotoxin-sensitive

and -resistant mice, these studies identified the widespread

apoptosis of sepsis to occur through an LPS-independent

pathway(s). In addition to depletion of lymphocytes, sepsis

induces apoptosis of a large number of epithelial cells. Gut

[97], lungs [98] and liver [99] are the predominant organ

sites of increased epithelial cell apoptosis; endothelial cells

in these tissues are affected to a certain extent as well

[100].

It has been suggested that apoptosis can contribute to the

state of immunosuppression in prolonged sepsis in at least

two major fashions: the programmed cell death of key

effector cells, as described above, or alternatively, the

capacity of apoptotic cells to induce anergy and Th2-

responses in surviving immune cells such as macrophages

and dendritic cells [101]. When macrophages or dendritic

cells phagocytose apoptotic cells, both cell types express

lower levels of co-stimulatory molecules than expected

[102], while releasing large amounts of anti-inflammatory

cytokines such as transforming growth factor-beta (TGF-b)
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and IL-10 [103]; high levels of the latter cytokine a par-

ticularly poor prognostic factor in sepsis patients [104].

The TAM family of receptors (Tyro3, Axl, Mer tyrosine

kinase) are implicated in apoptotic cell recognition, as

compound deficiencies of these molecules result in defec-

tive apoptotic cell clearance, increased TNFa production,

and spontaneous hyperactivation of macrophages and

dendritic cells [105]. Other candidate’s receptors that may

mediate apoptotic cell recognition to suppress immune

responses include CD35, avb5 integrin, C1q and the

phosphatidylserine receptor [106].

In elegant adoptive transfer experiments using the CLP

model, parenteral administration of necrotic cells increased

IFN-c levels and decreased mortality, while administration

of apoptotic cells had the opposite effect, reducing IFN-c
levels and greatly increasing mortality [107]. In these

studies, the beneficial effects of necrotic cells were blocked

in IFN-c deficient animals or with anti-IFN-c antibodies

[107]. These results support the clinical evidence that the

pathways of cell death that transpires in early sepsis are

likely to exert profound influences on subsequent immune

competence and clinical outcome, with high levels of

apoptosis being particularly deleterious.

Mitochondrial dysfunction apparent during sepsis and

other critical illnesses contributes to a proclivity for cell

death and organ failure. In particular, nitric oxide (NO), a

proximal mediator of the inflammatory cascade in sepsis,

exerts inhibitory effects on mitochondrial electron trans-

port chain complexes. Histopathologic evidence in splenic

autopsies of septic patients suggests the mitochondrial

pathway plays a prominent role in lymphocyte apoptosis

[90]. Furthermore, skeletal muscle ATP concentrations

were significantly lower in patients with sepsis who sub-

sequently died than those who ultimately survived [108], a

finding which could be correlated to overproduction of NO

and depletion of cellular antioxidant capacity. In a rat CLP

model, oxidative stress within skeletal muscles develops

early in the onset of sepsis, leading to inhibition of active

mitochondrial respiration [109]. Bcl-2 transgenic mice,

which selectively overexpress an anti-apoptotic protein that

acts to preserve mitochondrial integrity, show improved

survival in the CLP model compared to normal mice [110].

Along with mitochondrial pathway, the death receptor

pathway also plays an important role in provoking lym-

phocyte apoptosis during sepsis. Mice with defects in the

Fas/Fas ligand signaling pathway through genetic engi-

neering or pharmacological blockade show decreased

levels of sepsis-induced lymphocyte apoptosis [111, 112],

as well as increased survival in the CLP model [113].

Furthermore, immunohistologic analyses and study of

caspase activation patterns in apoptotic lymphocytes iso-

lated from baboons with E. coli-induced septic shock [114]

as well as a large series of human sepsis patients [115] are

consistent with contributions from both the mitochondrial

and death-receptor pathways of apoptosis. However, inhi-

bition of B cell apoptosis by specific targeting of FccRII

(CD32), an ITIM-containing Fc receptor, was insufficient

to reduce mortality in the mouse CLP model, despite

leading to a significant drop in apoptotic cells numbers

[116]. Thus it is likely that B cell numbers need to be

dramatically reduced in sepsis to affect overall survival; the

anti-inflammatory response triggered in T cells following

their interacting with apoptotic B cells, while poorly

understood, could help explain this apparent paradox.

Therapeutic perspectives on cell death pathways

in sepsis

Based on the animal studies and on patients findings

observed until now, abrogation of apoptosis during sepsis

seems to be an interesting therapeutic strategy, in order to

prevent death of immune cells and maintain the integrity of

the mucosal surface. However, sepsis is a complex disease

and only specific subpopulations might benefit form dif-

ferent therapeutic strategies or the introduction of a certain

therapy at different time points. Indeed, in the clinical

setting, very few treatments have been proven to provide

significant benefit so far. Administration of insulin [117]

and activated protein C [118] are among these established

therapies. Interestingly, these treatments have the theoret-

ical potential to target apoptotic pathways, and it is likely

reduced apoptosis may contribute to their therapeutic

benefit [119]. For example, in addition to its anti-inflam-

matory effect, administration of insulin to septic patients

can induce cell proliferation, probably by activation of Akt/

PKB pathways [120]. Activated protein C has similarly

been shown to counter the induction of apoptosis in animal

studies and in vitro studies in human endothelial and

monocyte cell lines [121, 122].

Caspase inhibition has been a focus of anti-apoptotic

therapy in sepsis with encouraging results in animal models.

Treatment with z-VAD (N-benzyloxycarbonyl-Val-Ala-

Asp(O-methyl) fluoromethyl ketone), a broad-spectrum

caspase inhibitor, improves the survival of septic mice

[123]. The administration of siRNA directed against the

caspase-8 gene transcript also improves survival in the

mouse CLP model [111]. However, there are important

theoretical and pharmacological considerations that may

limit the utility of caspase-targeted approaches. First, since

only a very small amount of activated caspase-3 can initiate

DNA fragmentation and apoptosis, the pharmacological

blockade would have have to be highly potent and penetrant

[101], while caspase inhibitors at large doses can have non-

specific side effects including cytotoxicity. Anti-retroviral

protease inhibitors have also been tested in murine sepsis
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and shown to increase survival, reduce lymphocyte apop-

tosis, early TNFa and late IL-6 and IL-10 levels [124].

Targeted with the death receptor pathway is another

intriguing approach to ameliorate sepsis-associated apop-

tosis and immune dysfunction, especially since high levels

of Fas expression are evident in the tissues of septic ani-

mals. In mouse CLP studies, inhibition of Fas signaling

using a Fas-based fusion protein (FasP, Amgen, Inc.) to

block receptor ligation reduced lymphocyte apoptosis,

improved organ blood flow, prevents hepatic injury, and

reduces mortality [113, 125]. The results on blocking

lymphocyte apoptosis and hepatic injury have been repro-

duced in an approach employing siRNA targeting Fas [111].

Finally, the pharmacological targeting mitochondrial

reactive oxygen species (ROS), whose production is char-

acteristic of early stages of apoptosis, offers another potential

therapeutic approach to reduce sepsis-induced cell death.

Nitroxides, such as 4-hydroxy-2,2,6,6,-tetramethyl piperi-

dine-1-oxyl (TEMPOL) act as effective ROS scavengers and

provide a cytoprotective activity in experimental models of

oxidative stress [126]. A derivative of TEMPOL coupled to

gramicidin S for mitochondrial targeting was protective in a

rat model of lethal hemorrhagic shock, blocking activation of

the pro-apoptotic caspases -3 and -7 [127]; extension of these

studies to sepsis models would appear to hold merit.

Conclusions

Sepsis is an exaggerated and detrimental inflammatory

response reflecting the host’s desperate attempt to control

an overwhelming infection. Within septic patients, specific

cell populations are dying, and indeed so are the patients

themselves. However, with the advent of antibiotic therapy

and modern intensive care procedures for life support,

physicians are in a position to rescue more sepsis patients

through improved understanding of the fundamental path-

ophysiology, including the prominent role of cell death.

While apoptosis has been the major focus of investigative

attention, necrosis, pyroptosis and extracellular trap-asso-

ciated cell death certainly also play important role in this

disease. Indeed, a variety of modalities of cell death co-exist

in septic patients and the ultimate clinical phenotype is the

result not only of the cell populations lost, but also of the

proinflammatory and antiinflammatory effects of necrotic

and apoptotic cells (respectively) on macrophage and den-

dritic cell function (Fig. 3). Moreover, specific virulence

factors expressed by individual inciting bacterial patho-

gen(s) may skew the frequency and distribution of cell

death phenotypes and thus the tempo and severity of illness.

It is apparent that cell disintegration, and the molecules

thereby released, plays a governing roles in the inflamma-

tory response and host immune competence during sepsis.

Comprehension of the molecular mechanisms implicated in

this phenomenon might lead to the development of thera-

peutic strategies targeted against dying cells and the signals

they transmit, thereby mitigating their negative effects.
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