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SUMMARY

Bacterial infections associated withmethicillin-resis-
tant Staphylococcus aureus (MRSA) are a major
economic burden to hospitals, and confer high
rates of morbidity and mortality among those in-
fected. Exploitation of novel therapeutic targets is
thus necessary to combat this dangerous pathogen.
Here, we report on the identification and character-
ization, including crystal structures, of two nitric
oxide synthase (NOS) inhibitors that function as anti-
microbials againstMRSA. Thesedataprovide thefirst
evidence that bacterial NOS (bNOS) inhibitors can
work synergistically with oxidative stress to enhance
MRSAkilling.Crystal structures show that each inhib-
itor contacts an active site Ile residue in bNOS that
is Val in the mammalian NOS isoforms. Mutagenesis
studies show that the additional nonpolar contacts
provided by the Ile in bNOS contribute to tighter
binding toward the bacterial enzyme.

INTRODUCTION

As bacterial pathogens continually acquire resistance to
commonly used antibiotics, it has become clear that novel ther-
apeutic strategies are required to combat serious infections
(Talbot et al., 2006). In particular, there is an urgent need for
the development of new pharmaceuticals that target the
pre-eminent Gram-positive human bacterial pathogen, methi-
cillin-resistant Staphylococcus aureus (MRSA). MRSA, a Gram-
positive pathogen resistant to common b-lactam antibiotics
(Loomba et al., 2010), was first reported in 1961 (Jevons et al.,
1961) and remains one of the most costly bacterial infections
worldwide (Diekema et al., 2001). MRSA is a major threat to pub-
lic health because of the high prevalence among nosocomial
infections, and the emergence of highly virulent community-
associated strains and their varying epidemiology (Stefani
et al., 2012). In recent years, the threat of MRSA has been

heightened by reports of strains resistant to vancomycin, as
this agent is often considered the drug of last resort (Gardete
and Tomasz, 2014). Characterization and exploitation of alterna-
tive bacterial drug targets will be essential for the future manage-
ment of MRSA infections.
Recent gene deletion experiments in S. aureus, Bacillus

anthracis, and Bacillus subtilis have implicated bacterial nitric
oxide synthase (bNOS) as a potential drug target, since this
enzyme provides the bacterial cell a protective defense mecha-
nism against oxidative stress and select antibiotics (Gusarov
et al., 2009; Shatalin et al., 2008; van Sorge et al., 2013). In
Gram-positive pathogens, it has been proposed that bacterial
NO functions to remove damaging peroxide species by acti-
vating catalase, and to limit damaging Fenton chemistry by nitro-
sylating thioredoxins involved in recycling the Fenton reaction
(Gusarov and Nudler, 2005; Shatalin et al., 2008). We recently
provided an initial proof of principle regarding pharmacological
targeting of bNOS, as growth of the nonpathogenic model
organism B. subtilis was severely perturbed in response to com-
bination therapy with an active site NOS inhibitor and an estab-
lished antimicrobial (Holden et al., 2013).
Design and development of a potent bNOS inhibitor against

bone fide pathogens such as MRSA is complicated by the active
site structural homology shared with the three mammalian NOS
(mNOS) isoforms (Pant et al., 2002): neuronal NOS (nNOS),
inducible NOS (iNOS), and endothelial NOS (eNOS). It is espe-
cially important not to inhibit eNOS given the critical role it plays
in maintaining vascular tone and blood pressure (Yamamoto
et al., 2001). Selectivity over nNOS may represent less of an im-
mediate problem, sincemany of the polar NOS inhibitors charac-
terized thus far are not very effective at crossing the blood-brain
barrier (Silverman, 2009). Recent structure-based studies utiliz-
ing B. subtilis NOS (bsNOS) as a model system for bNOS sug-
gest that specificity can be achieved through targeting the pterin
binding site (Holden et al., 2013, 2014), as the bNOS and mNOS
pterin binding sites are quite different.
To quickly identify potent bNOS inhibitors, we screened a

diverse set of NOS inhibitors (Figure 1) using a novel chimeric
enzyme recently reported for bNOS activity analysis (Holden
et al., 2014). From this high-throughput analysis we were able
to identify two potent and chemically distinct bNOS inhibitors.
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Crystal structures and binding analyses of these inhibitors re-
vealed both to bind a hydrophobic patch within the bNOS active
site. Moreover, both compounds possess antimicrobial activity
against S. aureus, suggesting that these NOS inhibitors could
represent viable new drug leads against this foremost human
pathogen so frequently resistant to current antimicrobials.

RESULTS AND DISCUSSION

Identification of Potent bNOS Inhibitors
Rapid identification of molecular fragments that function as
potent bNOS inhibitors is a key initial step toward the design
and characterization of future bNOS inhibitors. To carry this

out, we adapted a bNOS activity assay (Holden et al., 2014) to
screen through a series of NOS inhibitors using a single time-
point approach (Figure 2). Concurrently, we measured the KS

for each inhibitor using the imidazole displacement assay. In
both of these studies bsNOSwas used as a model system, since
bsNOS assays arewell developed and bsNOS shares high active
site sequence homologywithS. aureus andB. anthracisNOS en-
zymes. While all inhibitors bound to bsNOS in the mM range, the
most potent bsNOS inhibitors identified from the activity analysis
were calculated to have KS values in the low-mM to nM range.
Using the single time-point approach in combination with the
imidazole displacement assay, we identified compounds that
were both potent inhibitors and tight binders to the active site.

Figure 1. NOS Inhibitor Library Used in this Study
The inhibitor KS values, determined from an imidazole displacement assay, are reported in mM for each inhibitor of bsNOS. Isolation and characterization of NOS

inhibitors marked by awere previously reported by Delker et al. (2010), b by Huang et al. (2013), g by Huang et al. (2014), d by Holden et al. (2013), x by Jing et al.

(2014), p by Holden et al. (2013), s by Huang et al. (2012), 4 by Huang et al. (2014), c by Holden et al. (2014), w by Cinelli et al. (2014), and f by K.S. (unpublished

data); inhibitors marked by q are reported in this article.
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SinceNG-nitro-L-arginine (L-NNA) is an excellent inhibitor analog
of the NOS substrate L-Arg, the potency of L-NNA at 40.9% ±
5.3% nitrite (Figure 2) was established as an arbitrary threshold
for identifying designer molecules with increased potency. Using
L-NNA as a benchmark led us to classify several NOS inhibitors
as potent bNOS inhibitors. This group includes three aminoqui-
noline inhibitors, two 6-benzyl-aminopyridine inhibitors, and
two aminopyridine inhibitors. Of the two aminopyridine inhibi-
tors, 7 was previously described as a NOS inhibitor with antimi-
crobial properties (Holden et al., 2013). Since we previously
characterized the binding of aminopyridine inhibitors to bsNOS,
we selected the most potent aminoquinoline and 6-benzyl-ami-
nopyridine-based inhibitors, 19 and 32, respectively, for further
analysis. Compounds 19 and 32 were also the two most potent
inhibitors of the 37 NOS inhibitors evaluated using the bsNOS
single time-point analysis at 6.1% nitrite and 13.2% nitrite,
respectively. In addition, inhibitor potency of 19 and 32 was a
direct result of competing with substrate at the active site, as
neither compound influenced electron transfer rates or the
Griess reaction chemistry used to measure bNOS activity (Fig-
ure S1; Table S1).

Isoform Selectivity of NOS Inhibitors
Compounds 19 and 32 were next assayed separately against
purified NOS isoforms at varying concentrations (Holden et al.,
2014). Even though the median inhibitory concentration (IC50)
for both mNOS and bsNOS was measured by complementary
methods, both methods allowed for an excellent comparison
of inhibitor potency, as the IC50 was used to calculate Ki using
the Cheng-Prusoff equation (Cheng and Prusoff, 1973). From
our Ki analysis (Table 1), it is clear that both 19 (269 nM) and
32 (1940 nM) function as potent bNOS inhibitors and demon-
strate excellent selectivity over both iNOS and eNOS (Table 1).
Although selectivity over nNOS remains an issue, it is unclear
whether cross-reactivity with nNOS expressed in neuronal tis-
sues would represent an important limiting factor for these drugs
during short-course antibacterial therapy unless blood-brain
penetration was high; indeed, nNOS inhibition itself has been
examined as a treatment for Parkinson’s disease in a rat model
(Yuste et al., 2012).
To better understand the structural basis for inhibitor potency

and selectivity, we solved inhibitor bound crystal structures of
19 and 32 (Figure 3; Table 2). Both 19 and 32 were co-crystal-
lized in the presence of the pterin molecule H4B. However, the
physiological pterin group for bNOS remains unclear, as many
bNOS-containing bacteria do not contain the biosynthetic ma-
chinery required for H4B synthesis (Pant et al., 2002). Previous
work showed the ubiquitous pterin, tetrahydrofolate, supports
NO production by bNOS (Adak et al., 2002; Reece et al.,
2009). In NOS crystal structures, H4B binding is stabilized by
an H bond to heme propionate D, an H bond with a conserved

Arg residue, and a p-p stacking interaction with a conserved
Trp residue (Figure 3). Although the function of pterins in
bNOS is unclear, spectroscopic studies indicate that pterins
are not required for stability, as in mNOS; pterins are required
for electron transfer in all NOS isoforms (Chartier and Couture,
2004).
Although 19 and 32 are chemically quite different, they both

bind to the active site Glu-243 through a series of H bonds,
and do not interact with H4B. For the nNOS inhibitor bound crys-
tal structures, the fluorinated-benzyl group of both 19 and 32
bound to a hydrophobic pocket adjacent to the heme propionate
group. This hydrophobic pocket is composed of residues Leu-
337 and Met-336 from the N-terminal Zn2+ binding motif and
Tyr-706 (Figures 3A and 3B). Unlike nNOS, bNOS does not
contain an N-terminal Zn2+ binding motif, and therefore does
not contain an analogous hydrophobic pocket adjacent to the
heme propionate. Despite slight differences in binding of the
fluorinated-benzyl group, in both NOS isoforms the binding of
19 and 32 was further stabilized by H bonds between the sec-
ondary amine of each inhibitor and the heme propionate groups
(Figures 3D and 3E). Direct comparison of the bsNOS-19 and the
previously reported nNOS-19 (Cinelli et al., 2014) structures re-
vealed the binding mode of 19 to be unchanged between the
two NOS isoforms. However, the binding mode in bsNOS was
further stabilized by the hydrophobic contact between Ile-218
and the aminoquinoline group of 19. Since Ile-218 is within van
der Waals contact of 19 and the analogous residue in nNOS is
Val-567, our data suggest that the slight differences in hydropho-
bicity between Ile and Val allow for improved binding of 19 to
bsNOS.
Similar to 19, crystal structure analysis of 32 demonstrates the

inhibitor binding mode to be further stabilized by the hydropho-
bic contact between the inhibitor and Ile-218 (Figure 3C;
Figure S1). In both the nNOS-32 and I218V-bsNOS-32 crystal
structures (Figures 3E and 3F, respectively), the inhibitor binding
mode of 32 is unchanged by the Ile/Val difference, compared
with wild-type (WT) bsNOS. To evaluate the contribution of Ile-
218 to the inhibitor binding mode, wemeasured inhibitor binding
using the imidazole displacement assay. From this analysis we
found the inhibitor binding of both 19 and 32 to be !5- to
6-fold tighter to Ile-218 over I218V (Table 3). The crystal struc-
tures and binding assay results suggest that the increased

Figure 2. Based on a Single Time-Point
Analysis Using bBiDomain to Evaluate Bac-
terial NOS Inhibition, NOS Inhibitors Have
Varying Potency Toward Bacterial NOS
Nitrite concentrations were measured after a 4-min

incubation. Error bars represent the average ± SEM

for three separate experiments.

Table 1. Inhibition of NOS Isoforms by Inhibitors 32 and 19

Inhibitor

Ki bBiDomain

(nM)

Ki nNOS

(nM)

Ki iNOS

(nM)

Ki eNOS

(nM)

19 269 164 31,900 7,250

32 1,940 525 6,440 2,870

The bBiDomain construct was used to evaluate inhibitor Ki against

bsNOS.
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hydrophobicity of Ile-218 over the analogous mNOS Val residue
improves inhibitor binding to bNOS. This is partly observed in the
crystal structures, as binding of 19 or 32 induces an alternative
rotameric position in Ile-218 to form a hydrophobic contact
with both 19 and 32 (Figure S1). Considering that Ile-218 is
conserved across all bNOS enzymes (Wang et al., 2004), future
inhibitors designed to target bNOS should continue to exploit
Ile-218 by using the scaffolds of 19 and 32.

Anti-MRSA Activity of NOS Inhibitors
To evaluate the antibacterial potential of NOS inhibitors 19 and
32 on bacterial growth, we utilized the highly virulent CA-MRSA
strain UAMS118 (wt) representative of the USA300 clonal line-
age and a previously engineered isogenic NOS deletion mutant
(van Sorge et al., 2013). Since previous experiments have
shown bacterial Dnos strains are more susceptible to H2O2-
mediated killing (Holden et al., 2013; Shatalin et al., 2008; van
Sorge et al., 2013), we measured the effect of NOS inhibitors
and H2O2 on S. aureus (Figure 4). Our results both confirm
that the Dnos strain is more susceptible to H2O2-mediated
killing than the wt strain, and further demonstrate that co-treat-
ment of S. aureus with H2O2 and a NOS inhibitor significantly
increases the H2O2-mediated killing of the bacteria. Interest-
ingly, both 19 and 32 exhibit some direct bacteria toxicity at
200 mM, as demonstrated by the modest decrease in bacterial
survival for both wt and Dnos when treated with inhibitor alone
(Figure 4). For example, at 60 min 19 alone decreases growth
by about 3-fold, but with peroxide 19 decreases growth
30-fold. While this indicates a modest effect on non-NOS tar-
gets, the primary effect of 19 is to impart far greater sensitivity
to oxidative stress, and is consistent with 19 operating primarily
by inhibiting bNOS. We also evaluated the toxicity of 19 and 32
using mouse embryonic fibroblast cells and found the IC50

values for 19 and 32 to be 5.84 mM and 11.86 mM (Table S2),

respectively. These data indicate that toxicity of NOS inhibitors
toward mammalian cells needs to be lowered for further
consideration as a therapeutic agent.
The major effect of 19 and 32 is to work synergistically with

H2O2 to significantly limit bacterial growth, most likely by
limiting NO production. These results are consistent with
previous results indicating that blocking of NO signaling in-
creases bacterial susceptibility to oxidative stress (Gusarov
and Nudler, 2005; Holden et al., 2013), and indicate that 19
and 32 could perhaps function as antimicrobials to increase
susceptibility to innate immune clearance via an oxidative
burst. Furthermore, considering that many existing pharmaceu-
tical antibiotics function through an oxidative mechanism
(Kohanski et al., 2007), bNOS inhibitors such as 19 and 32
could theoretically synergize to increase the killing efficiency
of such agents.

SIGNIFICANCE

NO generated by bNOS helps to protect certain Gram-posi-
tive bacteria from oxidative stress, including antibiotic-
induced oxidative stress (Gusarov and Nudler, 2005;
Gusarov et al., 2009; van Sorge et al., 2013). In earlier work,
we found that a small number of inhibitors developed for
selective nNOS inhibition also improved the efficacy of anti-
microbials, suggesting that bNOS might be a viable drug
target (Holden et al., 2013). In the present study we sought
to achieve two goals. The first was to identify bNOS-selec-
tive inhibitors with antimicrobial activity against the impor-
tant human pathogen, MRSA. Of the many compounds
screened, two were found to bind well to bNOS and exhibit
antimicrobial activity with selectivity over eNOS and iNOS.
Selectivity over eNOS is more important, since interfering
with eNOS will adversely affect the critical role that

Figure 3. Inhibitor BoundNOSCrystal Struc-
tures with Select Side Chains ColoredWhite,
Heme Group Colored Salmon, and Both the
Active Site Inhibitor and H4B Molecule
Colored Yellow
For bsNOS inhibitor bound structures there is a

chlorine ion bound at the carboxylate binding site of

L-Arg, which is shown as a green sphere. Both 19

and 32 bind to nNOS and bsNOS. In the nNOS

structures (A and B) the fluorinated-benzyl group

binds to a hydrophobic patch that is not present

in bsNOS, adjacent to the heme propionate and

composed of Y706, L337, and M336. At the NOS

active sites, both 19 and 32 bind in similar orienta-

tions to form a network of H bonds indicated by

dashed lines.For thebsNOSstructures, both19and

32 are within a hydrophobic contact of bsNOS I218.

(A) 19 bound to nNOS (PDB: 4CAO).

(B) 32 bound to nNOS with the FO-FC map con-

toured at 4.0s.

(C) Chemical representations of 19 and 32.

(D) 19 bound to bsNOS with the FO-FC map con-

toured at 3.0s.

(E) 32 bound to bsNOS with the FO-FC map con-

toured at 3.0s.

(F) 32 bound to I218V bsNOS with the FO-FC map

contoured at 3.0s.
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eNOS-derived NO plays in maintaining vascular tone and
blood pressure (Yamamoto et al., 2001). The second goal
was to use crystallography to identify subtle differences be-
tween the bNOS and mNOS active sites to exploit for future
inhibitor design. Ile-218 (Val in mNOS) contacts the inhibi-
tors, and the I218V mutant exhibits about a 6-fold lower
affinity thanWT. Although this is a rather modest difference,
we have also found that several NOS inhibitors more readily
bind to the pterin site in bNOS (Holden et al., 2015). Given the
lower affinity of pterins for bNOS compared with mNOS, this
is another important binding site difference between bNOS
andmNOS. The Ile versus Val active site difference, together
with the larger structural differences in the pterin site, are
critical molecular features that could be exploited in future
inhibitor design efforts.

EXPERIMENTAL PROCEDURES

Molecular Biology
Active site mutation I218V was introduced to bsNOS by site-directed muta-

genesis using PfuTrubo (Agilent). Both WT and I218V bsNOS were expressed

and purified from Escherichia coli as previously described for bsNOS (Pant

et al., 2002). YumC and bBiDomain were also purified from E. coli and used

for activity analysis (Holden et al., 2014). Recombinant rat nNOS and murine

iNOS were expressed in E. coli and isolated as reported previously (Hevel

et al., 1991; Roman et al., 1995).

Bacterial NOS Activity Inhibition
Reactions containing both bBiDomain (a chimera of bsNOS and redox partner

YkuN) and YumC were initiated with reduced nicotinamide adenine dinucleo-

tide phosphate (NADPH) and run for 4 min at 35"C as previously described

(Holden et al., 2014). Substrate N-u-hydroxy-L-arginine (NOHA) and NOS in-

hibitor were included in each reaction at 200 and 30 mM, respectively. The

Table 2. Data Collection, Processing, and Refinement Statistics of the NOS Inhibitor Bound Structures

bsNOS-19 bsNOS-32 I218V bsNOS-32 nNOS-32

PDB: 4D7H PDB: 4D7J PDB: 4D7I PDB: 4D7O

Data Collection

Wavelength (Å) 0.976484 0.918370 0.999746 0.9999

Space group P21212 P21212 P21212 P212121

No. of unique reflections 32,128 (2,261) 70,341 (3,408) 48,394 (2,575) 90,851 (3,910)

Cell dimensions

a, b, c (Å) 80.9, 94.7, 62.8 80.5, 94.8, 62.8 80.6, 95.0, 61.6 51.8, 110.6, 165.2

a, b, g (") 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90

Resolution (Å) 49.62–2.02 (2.07–2.02)a 37.06–1.55 (1.58–1.55)a 48.94–1.96 (2.01–1.96)a 1.78 (1.81–1.73)

Rmerge 0.128 (0.570) 0.052 (2.522) 0.135 (1.518) 0.061 (0.662)

RPIM 0.078 (0.530) 0.033 (1.599) 0.096 (1.074) 0.030 (0.385)

CC1/2 0.997 (0.834) 1.000 (0.528) 0.992 (0.558) 0.999 (0.834)

I/sI 10.1 (1.6) 18.0 (0.6) 7.3 (1.0) 26.4 (1.2)

Completeness (%) 99.5 (97.5) 99.8 (99.8) 99.6 (100.0) 99.0 (87.1)

Redundancy 5.2 (3.0) 6.5 (6.7) 4.3 (4.4) 4.9 (3.3)

Refinement

Resolution (Å) 49.62–2.02 (2.092–2.02) 37.061–1.550 (1.605–1.55) 48.94–1.96 (2.03–1.96) 92.07–1.78 (1.826–1.78)

No. of reflections used 31,936 70,050 34,419 90,785

Completeness (%) 98.8 99.45 99.23 98.86

Rwork 0.1849 (0.2734) 0.173 (0.3612) 0.1893 (0.3501) 0.1794 (0.289)

Rfree 0.2377 (0.3350) 0.2035 (0.3715) 0.2352 (0.3622) 0.2092 (0.294)

No. of atoms

Total 3,257 3,468 3,253 7,283

Macromolecules 2,952 2,950 2,940 6,673

Ligands 101 121 92 179

Solvent 204 397 221 431

B factor

Average 41.4 28.7 41.1 38.1

Macromolecules 41.4 27.7 41.2 38.5

Ligands 42.8 29.5 34.5 26.1

Solvent 41.9 36.4 42.9 38

Root-mean-square deviations

Bond lengths (Å) 0.007 0.007 0.008 0.01

Bond angles (") 1.177 1.195 1.19 1.311
aValues in parentheses are for highest-resolution shell.
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Griess reaction was used tomeasure nitrite levels as a function of NOS activity.

Percentage of nitrite was calculated for each reaction as the concentration of

nitrite detected in the presence of inhibitor divided by the concentration of

nitrite detected without inhibitor present. Each reaction was measured in

duplicate for three separate trials.

Ki Determination
TheKi wascalculated from thehalf-maximal inhibitor concentration (IC50) andKD

of L-NOHA using the Cheng-Prusoff equation (Cheng and Prusoff, 1973). For

bBiDomain, the previously reported KD of L-NOHA at 23.5 mM (Hannibal et al.,

2011) was used to calculateKi. IC50 wasmeasured for bsNOS using bBiDomain

and YumC as previously described (Holden et al., 2014). Cross-reactivity of in-

hibitors 19 and 32was checked over a concentration range of 0.01–50 mM inhib-

itor with the Griess reagents, and neither compound interfered or contributed

toward the Griess reaction. IC50 for mammalian NOS was determined using

the oxyhemoglobin assay as previously described (Huang et al., 2014).

Cytochrome c Oxidase Activity
Horse heart cytochrome c oxidase reduction was evaluated as previously

described (Holden et al., 2014) using Dε550 = 21 mM#1 cm#1 (Martasek

et al., 1999) and NADPH at 100 nM to initiate the reaction. For individual reac-

tions containing a NOS inhibitor, inhibitor concentrations were set at 1 mM,

10 mM, and 50 mM inhibitor. Each reaction contained bBiDomain and YumC

at 100 nM and 1 mM, respectively.

Crystallization and Structure Determination
Although the target of this study is S. aureus, we utilized bsNOS owing to the

better diffraction power of bsNOS crystals. In fact, bsNOS and S. aureus NOS

(saNOS) (Bird et al., 2002) are very similar, and the crystal structures superim-

pose with a 0.55-Å root-mean-square deviation of a carbon atoms. In addition,

32 of 33 residues within 10 Å of the heme iron and 14 of 17 residues within 10 Å

of the pterin cofactor are identical. As a result, structural insights gained from

bsNOS are directly applicable to saNOS. Crystals of bsNOS and the I218V

mutant were prepared using the hanging-drop method by mixing protein at

18 mg/ml and well solution in a 1:1 ratio. Prior to crystallization, the protein

was stored in a buffer composed of 25 mM Bis-Tris methane at pH 7.4,

75 mM NaCl, 2% (v/v) glycerol, 0.5% (w/v) PEG3350, and 1 mM DTT. The

well solution used for crystallization was composed of 60 mM Bis-Tris

methane, 40 mM citric acid, 15% (w/v) PEG3350, and 1.9% (v/v) 1-propanol

at pH 7.6. Crystals grew overnight after seeding with old crystals. Crystals

were cryoprotected in the well solution supplemented with 30% (v/v) glycerol,

2 mMH4B, and 5–10 mM inhibitor prior to being flash-frozen at 100 K. Crystals

of rat nNOS oxygenase domain were prepared and flash-frozen as previously

described (Li et al., 2014). Data were collected under cryogenic conditions on

individual crystals at both the Advanced Light Source (Berkeley, CA) and Stan-

ford Synchrotron Radiation Lightsource (Menlo Park, CA). The raw data frames

were indexed and integrated using either iMOSFLM (Battye et al., 2011) or XDS

(Kabsch, 2010). The program Aimless was then used to scale the datasets

(Evans, 2006). Inhibitor bound structures were refined using either PHENIX

(Adams et al., 2009) or Refmac (Vagin et al., 2004), with inhibitor restraints built

using PRODRG (Schuttelkopf and van Aalten, 2004).

Imidazole Displacement
Purified bsNOS was diluted to 2 mM into a buffered solution containing 50 mM

Tris (pH 7.6), 10mMNaCl, 100 mMDTT, and 1mM imidazole to generate a low-

spin heme. NOS inhibitors were titrated into the bsNOS-buffered solution, and

the conversion of the heme group from low spin to high spin was monitored

using a Cary 3E UV-visible spectrophotometer. The KS was calculated as pre-

viously described from the KS,app (Holden et al., 2013; Roman et al., 1995)

using the bsNOS KD imidazole at 384 mM and the bsNOS-I218V KD imidazole

at 506 mM (Wang et al., 2004).

Effect of Antimicrobial-Induced Stress and NOS Inhibitors on
S. aureus

Creation of the S. aureus UAMS1182 nos isogenic knockout is described in a

previous report (van Sorge et al., 2013). Parent (WT, wt) and knockout (Dnos)

Figure 4. NOS Inhibitors and Peroxide Work Synergistically to Eliminate S. aureus over Time
Colonies of S. aureus observed after (A) 30 min and (B) 60 min exposure to 200 mM 19 and/or 5 mM H2O2. Similarly, S. aureus viability was also measured at (C)

30 min and (D) 60 min following exposure to 200 mM 32 and/or 5 mM H2O2.

Error bars represent the mean ± SD of three replicates. Student’s t test gives ***p < 0.001, **p < 0.01, and *p < 0.05. wt, wild-type.

Table 3. Calculated KS Values by Imidazole Displacement for
NOS Ligands to bsNOS

Ligand WT KS (mM) I218V KS (mM)

L-Arg 4.8 ± 0.1 (Wang et al., 2004) 2.0 ± 0.2 (Wang et al., 2004)

19 3.6 ± 0.8 18 ± 2

32 8.9 ± 2.0 58 ± 4
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were cultured in cation-adjusted Mueller-Hinton broth (CAMHB). Prior to H2O2

assays, strains were cultured overnight at 37"C and subcultured at a 1/20

dilution in fresh CAMHB. Strains were grown to mid-log phase (OD600 !0.4),

pelleted by centrifugation, washed twice in CAMHB, and diluted in CAMHB

to a pre-determined concentration approximating 2 3 107 cfu/ml. Volumes

of 25 ml (53 105 cfu) were dispensed to 96-well plates (Corning Life Sciences)

in 200-ml aliquots of CAMHB and CAMHB with amendments including 5 mM

H2O2 (Sigma), 200 mM 19, 200 mM 32, and equivalent control volumes of

19/32 solvent. Plates were incubated at 37"C with shaking. Cultures were

sampled at 30-min intervals by removing 25 ml for serial dilution in CAMHB

and spot plating on Todd Hewitt agar (Becton Dickinson). Plates were incu-

bated overnight and culture cfu/ml was calculated by enumerating counted

colonies and multiplying back through the dilution factor. All conditions were

sampled in triplicate; values presented are mean ± SD. Statistical analysis

was performed in Excel (Microsoft) using the Student t test.

NOS Inhibitor Cytotoxicity in Mammalian Cell Culture
Cell toxicity assays were performed on mouse embryonic fibroblasts (MEF),

which were maintained in DMEM (Corning Cell Gro) media supplemented

with 10% fetal calf serum (Sigma-Aldrich) and 1% penicillin-streptomycin

(Mediatech, Corning) at !70% confluency. Cell Titer Glo assays (Cell Titer

Glo Luminescent Cell Viability Assay kit, Promega) were performed in clear-

bottom 96-well black-cell culture plates (Greiner Bio-One). After plating at

250 cells/well in a volume of 100 ml, cells were left undisturbed for at least

24 hr before addition of NOS inhibitor. NOS inhibitors 19, 32, and L-NG-nitro-

arginine methyl ester (Enzo Life Sciences) were added to the MEFs at 40, 20,

10, 5, 2.5, 1.25, 0.625, and 0.3125 mM. Cells were prepared for analysis 72 hr

after NOS inhibitors were added by addition of 10 ml of 0.1% Triton X-100 in

PBS with shaking for 1 min at room temperature (RT). Cell Titer Glo lysis re-

agent (20 ml) was then added followed by 1 min of shaking and a 10-min incu-

bation in the dark at RT. Luminescence was detected using an IVIS imaging

system (IVIS Lumina II, PerkinElmer). IC50 values were determined using the

GraphPad Prism software (GraphPad Software).

Chemical Library Preparation
Since bacterial NOS-selective inhibitors had not yet been identified, we

collected a diverse set of NOS inhibitors (1–25) from our previous NOS studies

(Holden et al., 2013; Huang et al., 2012, 2014; Jing et al., 2014; Kang et al.,

2014; Kohanski et al., 2007) as well as several newly synthesized molecules

(26–36). The collected small-molecule library (1–36) was composed of a

chemically diverse set of aminopyridine derivatives (aminopyridinyl-2-ethyl,

aminopyridinyl-2-benzyl, aminopyridinyl-2-phenyl), 7-azaindoles, thiophene

amidines, and 2-aminoquinolines. In general, inhibitors 26–36 generally have

arylalkyl side chains or an N1,N2-dimethylethane-1,2-diamine tail. Chemical

syntheses and spectral validation of the NOS inhibitors are included in the

Supplemental Information.

Chemical Synthesis
Details of the synthesis are provided in the Supplemental Information.

ACCESSION NUMBERS

Coordinate and structure factor files were deposited in the PDB with the

accession codes PDB: 4D7H, 4D7I, 4D7J, and 4D7O.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two tables, one figure, and five schemes and can be found with this article

online at http://dx.doi.org/10.1016/j.chembiol.2015.05.013.
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Table S1 Related to Figure 2. Cytochrome-c reductase activity measured using 100 nM bBidomain and 1 µM YumC in 
the presence of inhibitors 19 and 32 at varying concentrations. Inhibitors do not have significant effects on cytochrome-
c reductase activity indicating inhibitors do not interfere with redox activity of bBiDomain and YumC. 

[Inhibitor]assay, µM Cytochrome C Turnover (min-1) 
No Inhibitor 538 ± 32 

19, 1 µM 521 ± 70 
19, 10 µM 552 ± 12 
19, 50 µM 561 ± 19 
32, 1 µM 503 ± 15 

32, 10 µM 529 ± 11 
32, 50 µM 506 ± 18 

 
 

 
Figure S1 Related to Figure 3. Ile218 of bsNOS contributes a hydrophobic patch to facilitate binding of 19 and 32. 
Binding of either 19 or 32 induces a subtle change in the rotomeric position of Ile218. The alternate rotomeric position 
of Ile218 is best observed by direct comparison to the binding mode of N-omega-nitro-L-Arg (redrawn from PDB 
4UQR), an inhibitor that does not utilize the hydrophobic patch contributed by Ile218 for binding. The heme is colored 
salmon, 19 is shown in, 32 in blue, and N-omega-nitro-L-Arg in grey. Ile218 is colored to correspond with the inhibitor-
color scheme. 



 
Table S2 Related to Figure 2. Cytotoxicity of NOS inhibitors evaluated against mouse embryonic fibroblast cells in 
tissue culture after 72 h incubation. An IC50 for L-NAME could not be determined over the 40 µM to 0.3125 µM 
inhibitor range evaluated. 

 
NOS Inhibitor 

 
19 32 L-NAME 

IC50 (µM) 5.84 11.86 n.d. 
 
All Schemes Related to Figure 1. 
 

Compounds 26-29 were synthesized using previously established methods (Holden et al., 2015) (Scheme 1); 
dibromophenethyl derivative 39a-c were prepared by coupling of benzyl bromide (38a-b) with lithiated pyrrolyl-4,6-
lutidine. Intermediate 39a underwent microwave-assisted Rosenmund-von Braun reaction with CuCN to introduce a 
nitrile moiety (39b). Buchwald–Hartwig reaction of 39b and 39c with several aryl amines using Pd2(dba)3 and 
DavePhos gave 40-43. The 2,5-dimethylpyrrole protecting group was removed with NH2OH·HCl using a microwave to 
generate final products 26-29.  

 
Scheme 1. Reagents and conditions: a) (i) BuLi, 0 °C, 30 min, THF; (ii): I or II, 81-86%; b) CuCN, DMF, microwave, 
220 °C, 20 min, 57%; c) amine, Pd2(dba)3, DavePhos, NaOtBu, THF, 1,4-dioxane, 5~10 h, 100 °C, 69-90%; d) 
NH2OH(HCl) (5 equiv), EtOH, H2O, microwave, 120 °C, 25 min, 60-80%  

 
Compounds 30-33 were prepared using the synthetic pathway shown in Scheme 2.  Palladium-catalyzed 

Suzuki cross coupling between pyridinyl bromide and phenylboronic acid yielded 46. For addition of an amine tail in 
30-33, the aromatic nitrile moiety of 46 was converted to the prerequisite benzaldehyde; this was accomplished with 
DIBALH. The aldehyde of 47 was then condensed by reductive amination with several amines to give the 
corresponding benzylamines (48-51). The 2,5-dimethylpyrrole protecting group on 48-51 was removed with 
NH2OH•HCl using a microwave to generate final products 30-33. 

 
Scheme 2.  a) Pd(PPh3)4, Na2CO3, toluene, 12 h, 100 °C, 71%; b) DIBAL, CH2Cl2, 51% c) NaBH(OAc)3, AcOH, CH2Cl2, 
room temperature, 12 h, 62%, d) NH2OH(HCl) (5 equiv), EtOH, H2O, microwave, 120 °C, 25 min, 60-80%  

 
Chemical synthesis of 34 required Sonogashira coupling between 52 and 53 as shown in Scheme 3. 

Hydrogen reduction of acetylene and nitrile moieties of 54 with Raney-Nickel yielded desired aryl ethylamine 55. 
Treatment of formaldehyde with NaBH(OAc)3 and the following deprotection of 2,5-dimethylpyrrole gave N-



dimethylated product 34. 

 
Scheme 3. Reagents and conditions: a) Pd(PPh3)2Cl2, CuI, PPh3, DEA, DMF; b) Raney-Ni, H2, MeOH/EtOH; c) 
formaldehyde (35%), NaBH(OAc)3, MeOH/CH2Cl2; d) NH2OH(HCl) (5 equiv), EtOH, H2O, microwave, 120 °C, 25 min  

 
The methylene-linked bis(pyridine) derivative (35) was synthesized from addition of lithiated 2-(2,5-dimethyl-

1H-pyrrol-1-yl)-4,6-dimethylpyridine (37) to 0.5 equiv of 2,6-dichloropyridine (57) as a nucleophilic component (Scheme 
4) (Yamamoto et al., 2001). Although branched byproducts were produced, using 2 equiv of the lithiated pyridine was 
crucial because 58 contains an acidic methylene unit. Buchwald–Hartwig reaction with N1,N2-dimethylethane-1,2-
diamine and deprotection of dimethylpyrrole gave final product 35. 

 
Scheme 4. Reagents and conditions: a) BuLi, THF, ice bath to reflux; b) amine, Pd2(dba)3, DavePhos, NaOtBu, THF, 
1,4-dioxane, 12 h, 100 °C; c) NH2OH(HCl) (5 equiv), EtOH, H2O, microwave, 120 °C, 25 min  
 

The synthetic procedure for 36 is shown in Scheme 5. Pd(PPh3)4-catalyzed cross coupling between 2-
bromopyridine and benzylzinc bromide, which was prepared from benzyl bromide and Zn, afforded 2-benzylpyridine 
(61). Similar to the synthesis of 30-33, N1,N2-dimethylethane-1,2-diamine tail was installed after conversion of the 
carboxylate in 61 to 62 with DIBAL. 

 
Scheme 5. Reagents and conditions: a) Zn dust, Pd(PPh3)4, THF, room temp, 12 h; b) DIBAL, toluene; c) 
NaBH(AcO)3,AcOH, CH2Cl2, room temp, 12 h; d) NH2OH(HCl) (5 equiv), EtOH, H2O, microwave, 120 °C, 25 min.  
 
Synthesis and Spectral Data  
General Experimental Procedures  
 
General procedure for coupling reaction of benzyl bromide with lithiated pyrrolyl-lutidine; Method A. n-BuLi 
(1.6 M solution in hexanes, 3.75 mL, 6.0 mmol) was added dropwise to a solution of 2-(2,5-dimethyl-1H-pyrrol-1-yl)-
4,6-dimethylpyridine (1.2 g, 6.0 mmol) in THF (25 mL) at 0 °C. After being stirred for 30 min at the same temperature, 
the mixture was transferred to a solution of benzyl bromide (5.0 mmol) in THF (25 mL) at -78 °C via cannula. The 
reaction mixture was allowed to stir for an additional 20 min, and then quenched by addition of H2O (50 mL) and ethyl 
acetate (50 mL). The organic layer was partitioned, dried with MgSO4, and concentrated under vacuum. The residue 
was purified by flash chromatography (EtOAc/hexanes) to yield the corresponding products. 
 



 
2-(3,5-Dibromophenethyl)-6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridine (39a). The title compound was 
prepared using General Method A from 3,5-dibromobenzyl bromide (38a). 86%; pale yellow oil; 1H NMR (500 MHz, 
CDCl3) δ 7.51 (s, 1H), 7.26 (ss, 2H), 6.91 (s, 2H), 5.92 (s, 2H), 3.06 (q, J = 2.8 Hz, 4H), 2.40 (d, J = 1.6 Hz, 3H), 2.15 
(s, 6H); 13C NMR (126 MHz, CDCl3) δ 159.76, 151.73, 149.72, 145.43, 131.65, 130.43, 128.48, 122.77, 122.74, 120.42, 
106.76, 39.02, 34.89, 21.01, 13.27; MS ESI [M + H]+ = 449.3. 
 
3-Bromo-5-(2-(6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)ethyl)benzonitrile (39b).  
To a 5 mL microwave vial equipped with a magnetic stir bar was added 39a (448 mg, 1.0 mmol), CuCN (108 mg, 1.20 
mmol), and DMF (2 mL). After capping the vial, the sample was heated in the microwave irradiator for 20 min at 220 °C. 
After being cooled to room temperature, the reaction mixture was treated with dichloromethane (20 mL), filtered, and 
concentrated in vacuo. The residue was purified by flash chromatography to give the title compound (225 mg, 57%) as 
a pale yellow oil. 1H NMR (500 MHz, CDCl3) δ 7.63 (s, 1H), 7.57 (s, 1H), 7.41 (s, 1H), 6.93 (ss, 2H), 5.92 (s, 2H), 3.19 
– 3.03 (m, 4H), 2.41 (s, 3H), 2.13 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 159.27, 151.82, 149.88, 145.04, 136.39, 
132.31, 130.76, 128.44, 122.77, 122.75, 120.59, 117.45, 113.92, 106.81, 38.69, 34.58, 21.01, 13.26; MS ESI [M + H]+ 
= 394.5. 
 
2-(3-Bromo-5-fluorophenethyl)-6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridine (39c). The title compound was 
prepared using General Method A from 3-bromo-5-fluoro-benzyl bromide (38b). 81%; pale yellow oil; 1H NMR (500 
MHz, CDCl3) δ 7.15 (s, 1H), 7.10 (dt, J = 8.2, 2.1 Hz, 1H), 6.95 (s, 1H), 6.92 (s, 1H), 6.87 (m, 1H), 5.94 (s, 2H), 3.16 – 
3.03 (m, 4H), 2.42 (s, 3H), 2.17 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 162.60 (d, J = 250.1 Hz), 159.89, 151.75, 
149.71, 145.63 (d, J = 7.8 Hz), 128.46, 127.56 (d, J = 3.0 Hz), 122.74, 122.29 (d, J = 10.2 Hz), 120.40, 116.69 (d, J = 
24.4 Hz), 114.42 (d, J = 20.9 Hz), 106.79, 38.98, 35.04 (d, J = 1.8 Hz), 21.01, 13.28; MS ESI [M + H]+ = 387.2. 
 
General procedure for Buchwald Hartwig amination using Pd2(dba)3 and DavePhos: Method B;  A mixture of 3-
bromobenzene (0.25 mmol), amine (0.30 mmol), Pd2(dba)3 (12 mg, 0.0125 mmol), DavePhos (10 mg, 0.025 mmol), 
and NaOtBu (29 mg, 0.30 mmol) in THF (1.0 mL) and 1,4-dioxane (1.0 mL) was stirred at 80 °C for 12 h. The reaction 
mixture was then treated with diethyl ether (10 mL), filtered, and concentrated in vacuo. The residue was purified by 
flash chromatography (EtOAc/hexanes) to give the corresponding products. 
 
General procedure for deprotection of 2-(2,5-dimethyl-1H-pyrrol-1-yl)pyridine derivatives using microwave 
irradiation(Mukherjee et al., 2014): Method C; To a 5 mL microwave vial equipped with a magnetic stir bar the 
protected aminoyridine (0.1~ 0.5 mmol), hydroxylamine HCl (5 equiv), ethanol (2 mL), and water (1 mL) were added. 
After capping the vial, the contents were shaken vigorously and then heated in the microwave irradiator for 30 min at 
120 °C. The reaction mixture was concentrated in vacuo and purified by flash column chromatography using a C18 
flash cartridge (12 -25g, 40-63 µm / 230-400 mesh, Pore Size 60 Å) with 5 to 90% MeOH in water as the mobile phase. 
This method was applied to give pure (> 95% by HPLC) final compounds (65% - 80% yield).  
 
3-(2-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)ethyl)-5-((3-fluorophenethyl)amino)benzonitrile (40). 
The title compound was prepared using General Method B from 2-(3-fluorophenyl)ethylamine. 86%, colorless gel; 1H 
NMR (500 MHz, CDCl3) δ 7.37 – 7.28 (m, 1H), 7.01 (dt, J = 7.6, 1.2 Hz, 1H), 7.00 – 6.92 (m, 3H), 6.90 (s, 1H), 6.81 (s, 
1H), 6.66 (s, 1H), 6.63 (s, 1H), 5.92 (s, 2H), 3.96 (t, J = 5.9 Hz, 1H), 3.38 (q, J = 6.6 Hz, 2H), 3.11 – 3.05 (m, 2H), 3.05 
– 2.99 (m, 2H), 2.92 (t, J = 6.9 Hz, 2H), 2.41 (s, 3H), 2.15 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 163.98, 162.02, 
160.21, 151.68, 149.70, 148.20, 143.91, 141.38, 141.32, 130.25, 130.19, 128.44, 124.45, 124.43, 122.69, 120.96, 
120.29, 119.58, 117.45, 115.69, 115.53, 113.68, 113.51, 113.05, 112.81, 106.76, 44.34, 39.14, 35.40, 34.93, 21.01, 
13.28; MS ESI [M + H]+ = 453.7. 
 
3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-((3-fluorophenethyl)amino)benzonitrile (26). The title compound was 
prepared using General Method C from 40. 70%; pale yellow gel; 1H NMR (500 MHz, CDCl3) δ 7.34 – 7.27 (m, 1H), 
7.01 – 6.90 (m, 3H), 6.86 (s, 1H), 6.64 (s, 2H), 6.28 (s, 1H), 6.16 (s, 1H), 3.37 (q, J = 6.7 Hz, 2H), 2.90 (dd, J = 8.3, 5.4 
Hz, 4H), 2.85 – 2.76 (m, 2H), 2.18 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 162.98 (d, J = 246.1 Hz), 158.31 (d, J = 22.4 
Hz), 156.44, 149.67, 148.05, 144.22, 141.36 (d, J = 7.2 Hz), 130.18 (d, J = 8.4 Hz), 124.43 (d, J = 2.7 Hz), 121.28, 
119.68, 117.67, 115.61 (d, J = 21.0 Hz), 114.12, 113.57 (d, J = 21.2 Hz), 112.86, 112.70, 106.95, 44.37, 39.18, 35.81, 
34.92 (d, J = 1.7 Hz), 21.00; HRMS (ESI): calcd for C23H24FN4 [M + H]+, 375.1980; found, 375.1976. 
 
 3-(2-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)ethyl)-5-((3-fluorobenzyl)amino)-benzonitrile (41). The 
title compound was prepared using General Method B from 3-fluorobenzylamine. 69%; brown oil; 1H NMR (500 MHz, 
CDCl3) δ 7.32 – 7.27 (m, 1H), 7.08 (d, J = 7.6 Hz, 1H), 7.03 – 6.98 (m, 1H), 6.98 – 6.93 (m, 1H), 6.88 (s, 1H), 6.85 (s, 
1H), 6.77 (ss, 1H), 6.62 (s, 1H), 6.60 (s, 1H), 5.87 (s, 2H), 4.35 – 4.30 (m, 1H), 4.29 (s, 2H), 3.10 – 2.89 (m, 4H), 2.36 
(s, 3H), 2.09 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 163.16 (d, J = 246.6 Hz), 160.14, 151.66, 149.67, 148.06, 143.90, 
141.05 (d, J = 6.8 Hz), 130.38 (d, J = 8.2 Hz), 128.45, 122.69 (d, J = 2.8 Hz), 122.64, 121.37, 120.28, 119.50, 117.57, 



114.45 (d, J = 21.1 Hz), 113.99 (d, J = 21.8 Hz), 113.01, 112.83, 106.76, 47.28, 39.03, 35.32, 21.02, 13.26; MS ESI [M 
+ H]+ = 439.1. 
 
3-(2-(6-Amino-4-methylpyridin-2-yl)ethyl)-5-((3-fluorobenzyl)amino)benzonitrile (27). The title compound was 
prepared using General Method C from 41. 78%; pale yellow gel; 1H NMR (500 MHz, MeOD) δ 7.35 (td, J = 7.9, 5.8 
Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.08 (dt, J = 10.0, 2.0 Hz, 1H), 6.98 (td, J = 8.5, 2.6 Hz, 1H), 6.75 (s, 1H), 6.68 (s, 
2H), 6.31 (s, 1H), 6.26 (s, 1H), 4.33 (s, 2H), 2.84 (dd, J = 8.8, 5.8 Hz, 2H), 2.76 (dd, J = 8.8, 5.8 Hz, 2H), 2.18 (s, 3H); 
13C NMR (126 MHz, MeOD) δ 164.54 (d, J = 244.4 Hz), 160.10, 158.00, 156.10, 151.99, 150.43, 145.04, 143.86 (d, J 
= 6.8 Hz), 131.30 (d, J = 8.2 Hz), 123.90 (d, J = 2.9 Hz), 121.07, 120.52, 118.34, 114.77, 114.60, 113.99, 113.39, 
108.35, 47.38, 39.39, 36.71, 21.51; HRMS (ESI): calcd for C22H22FN4 [M + H]+, 361.1823; found, 361.1832. 
 
3-(2-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)ethyl)-5-fluoro-N-(4-fluorobenzyl)aniline  (42). The title 
compound was prepared using General Method B from 39c and 4-fluorobenzylamine. 75%; colorless oil; 1H NMR (500 
MHz, CDCl3) δ 7.37 – 7.31 (m, 2H), 7.10 – 7.01 (m, 2H), 6.95 (s, 1H), 6.89 (s, 1H), 6.31 – 6.24 (m, 2H), 6.16 (dt, J = 
11.2, 2.2 Hz, 1H), 5.92 (s, 2H), 4.27 (s, 2H), 3.10 – 3.01 (m, 2H), 3.01 – 2.92 (m, 2H), 2.40 (s, 3H), 2.15 (s, 6H); 13C 
NMR (126 MHz, CDCl3) δ 164.04 (d, J = 241.8 Hz), 161.13, 160.70, 151.61, 149.51, 149.41 (d, J = 11.5 Hz), 144.56 (d, 
J = 9.4 Hz), 134.51 (d, J = 3.3 Hz), 129.02 (d, J = 8.0 Hz), 128.47, 122.58, 120.11, 115.55 (d, J = 21.6 Hz), 108.85, 
106.71, 104.41 (d, J = 21.4 Hz), 97.38 (d, J = 25.7 Hz), 47.51, 39.30, 35.84 (d, J = 1.9 Hz), 21.02, 13.26; MS ESI [M + 
H]+ = 432.1. 
 
6-(3-Fluoro-5-((4-fluorobenzyl)amino)phenethyl)-4-methylpyridin-2-amine (28). The title compound was prepared 
using General Method C from 42. 63%; pale yellow gel; 1H NMR (500 MHz, CDCl3) δ 7.32 (dd, J = 8.5, 5.5 Hz, 2H), 
7.04 (t, J = 8.7 Hz, 2H), 6.37 – 6.28 (m, 3H), 6.17 (s, 1H), 6.16 – 6.11 (m, 1H), 4.27 (d, J = 5.3 Hz, 2H), 4.18 (t, J = 5.7 
Hz, 1H), 2.92 – 2.78 (m, 4H), 2.20 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 164.99 (d, J = 242.4 Hz), 162.06 (d, J = 245.1 
Hz), 158.62, 158.22, 156.73 (d, J = 55.5 Hz), 156.40, 149.72, 149.45 (d, J = 11.3 Hz), 144.86 (d, J = 9.5 Hz), 134.65 (d, 
J = 3.1 Hz), 129.01 (d, J = 8.1 Hz), 115.51 (d, J = 21.4 Hz), 114.06, 108.96 (d, J = 1.9 Hz), 106.86, 104.37 (d, J = 21.5 
Hz), 97.17 (d, J = 25.6 Hz), 47.47, 39.15, 36.11, 21.04; HRMS (ESI): calcd for C21H22F2N3 [M + H]+, 354.1776; found, 
354.1782. 
 
3-(2-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)ethyl)-5-fluoro-N-(3-fluorobenzyl)aniline (43). The title 
compound was prepared using General Method B from 3-fluorobenzylamine. 71%; pale yellow oil; 1H NMR (500 MHz, 
CDCl3) δ 7.36 – 7.31 (m, 1H), 7.17 – 7.11 (m, 1H), 7.10 – 7.06 (m, 1H), 7.02 – 6.96 (m, 1H), 6.94 (s, 1H), 6.89 (s, 1H), 
6.31 – 6.25 (m, 2H), 6.15 (dt, J = 11.1, 2.3 Hz, 1H), 5.92 (s, 2H), 4.32 (s, 2H), 3.05 (dd, J = 9.3, 5.8 Hz, 2H), 2.97 (dd, 
J = 9.2, 5.7 Hz, 2H), 2.40 (s, 3H), 2.15 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 164.55 (d, J = 112.3 Hz), 162.61 (d, J = 
116.1 Hz), 160.69, 151.60 , 149.52, 149.31 (d, J = 11.4 Hz), 144.57 (d, J = 9.3 Hz), 141.70 (d, J = 6.8 Hz), 130.22 (d, J 
= 8.4 Hz), 128.48, 122.76 (d, J = 2.7 Hz), 122.60, 120.12, 114.25 (d, J = 16.9 Hz), 114.08 (d, J = 17.4 Hz), 108.87, 
106.72 (d, J = 4.7 Hz), 104.49 (d, J = 21.4 Hz), 97.38 (d, J = 25.8 Hz), 47.63, 39.28, 35.82 (d, J = 1.9 Hz), 21.01, 13.25; 
MS ESI [M + H]+ = 432.1. 
 
6-(3-Fluoro-5-((3-fluorobenzyl)amino)phenethyl)-4-methylpyridin-2-amine (29). The title compound was prepared 
using General Method C from 43. 65%; pale yellow gel. 1H NMR (500 MHz, CDCl3) δ 7.32 (td, J = 7.9, 5.9 Hz, 1H), 
7.13 (d, J = 7.6 Hz, 1H), 7.07 (d, J = 9.8 Hz, 1H), 6.98 (td, J = 8.5, 2.7 Hz, 1H), 6.33 (dt, J = 9.5, 1.7 Hz, 1H), 6.31 – 
6.27 (m, 2H), 6.17 (s, 1H), 6.13 (dt, J = 11.3, 2.2 Hz, 1H), 4.31 (d, J = 4.6 Hz, 2H), 4.28 (d, J = 5.5 Hz, 1H), 2.90 – 2.78 
(m, 4H), 2.20 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 164.03 (d, J = 242.1 Hz), 162.12 (d, J = 247.0 Hz), 158.55, 158.23, 
156.78 (d, J = 52.3 Hz), 156.45, 149.77, 149.34 (d, J = 11.3 Hz), 144.86 (d, J = 9.5 Hz), 141.85 (d, J = 6.8 Hz), 130.18 
(d, J = 8.2 Hz), 122.76 (d, J = 2.8 Hz), 114.21 (d, J = 8.1 Hz), 114.04 (t, J = 4.3 Hz), 109.02 (d, J = 1.9 Hz), 106.89, 
104.45 (d, J = 21.4 Hz), 97.15 (d, J = 25.6 Hz), 47.59 (d, J = 1.8 Hz), 39.11, 36.11 (d, J = 1.9 Hz), 21.04; HRMS (ESI): 
calcd for C21H22F2N3 [M + H]+, 354.1776; found, 354.1781. 
 
4-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)benzonitrile (46). (4-Cyanophenyl)boronic acid (5.5 mmol)  
in 2 M Na2CO3 (aqueous solution, 5 mL) and methanol (5 mL) was added to a stirred solution of 2-bromo-6-(2,5-
dimethyl-1H-pyrrol-1-yl)-4-methylpyridine (5 mmol) and Pd(Ph3)4 (0.25 mmol) in toluene (20 mL) under a nitrogen 
atmosphere. The mixture was stirred at 100 °C for 24 h. After the solvent was removed under vacuum, the residue was 
partitioned between ethyl acetate (200 mL) and water (50 mL). The organic layer was dried (sodium sulfate), 
evaporated, and purified by column chromatography on a silica gel cartridge, using hexanes/ethyl acetate (70/30, v/v) 
to give the title product in a 71% yield. 1H NMR (500 MHz, CDCl3) δ 8.32 – 8.08 (m, 2H), 7.86 – 7.72 (m, 2H), 7.64 (t, J 
= 1.0 Hz, 1H), 7.08 (t, J = 1.0 Hz, 1H), 5.96 (s, 2H), 2.55 (s, 3H), 2.23 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 154.43, 
152.14, 150.49, 142.64, 132.54, 128.59, 127.49, 121.97, 120.10, 118.82, 112.62, 107.15, 21.36, 13.51; MS ESI [M + 
H]+ = 288.1 
 



 4-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)benzaldehyde (47). A solution of DIBAL in hexane (1.0 M, 
5.5 mL, 5.5 mmol) was added slowly to a solution of 46 (5 mmol) in CH2Cl2 (20 mL). The solution was stirred at room 
temp for 1 h and was then diluted with ethyl ether (20 mL). After careful addition of 1 N HCl (20 mL), the mixture was 
stirred for 15 min. The organic layer was washed with brine, dried over MgSO4, and evaporated. Chromatography on 
silica gel gave the title product 47 (51%). 1H NMR (500 MHz, CDCl3) δ 10.10 (s, 1H), 8.33 – 8.16 (m, 2H), 8.04 – 7.91 
(m, 2H), 7.68 (s, 1H), 7.07 (s, 1H), 5.96 (s, 2H), 2.54 (s, 3H), 2.24 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 192.02, 
155.09, 152.08, 150.33, 144.08, 136.53, 130.12, 128.60, 127.53, 121.78, 120.33, 107.07, 21.34, 13.51; MS ESI [M + 
H]+ = 291.8 
 
General procedure for reductive amination: Method D; To a stirred solution of benzldehyde (1 mmol) in 
dichloromethane (10 mL), amine (1 mmol), acetic acid (1 mmol), and NaBH(OAc)3 (1.1 mmol) were added, and the 
resulting mixture was stirred at room temperature for 12 h. The organic materials were extracted with ethyl acetate and 
dried over anhydrous MgSO4. After removal of the solvent under vacuum, the crude product was purified by flash 
column chromatography on a silica gel cartridge to give the target compound. 
 
N1-(4-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)benzyl)-N1,N2-dimethylethane-1,2-diamine (48). The 
title compound was prepared using General Method D from 47 and N1,N2-dimethylethane-1,2-diamine. 62%; colorless 
gel; 1H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 7.7 Hz, 2H), 7.59 (s, 1H), 7.43 (d, J = 7.9 Hz, 2H), 6.98 (s, 1H), 5.94 (s, 
2H), 3.61 (d, J = 6.5 Hz, 2H), 3.40 (dt, J = 39.9, 7.0 Hz, 2H), 2.87 (s, 3H), 2.67 – 2.53 (m, 2H), 2.51 (s, 3H), 2.30 (s, 
3H), 2.24 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 156.51, 155.75, 151.76, 149.82, 140.25, 137.37, 129.21, 128.62, 
126.88, 120.61, 119.41, 106.75, 62.34, 54.92, 46.93, 42.56, 34.59, 28.47, 21.33, 13.50; MS ESI [M + H]+ = 363.0  
 
N1-(4-(6-Amino-4-methylpyridin-2-yl)benzyl)-N1,N2-dimethylethane-1,2-diamine (30). The title compound was 
prepared using General Method B from 48. 60%; colorless gel; 1H NMR (500 MHz, MeOD) δ 7.98 (d, J = 8.5 Hz, 2H), 
7.93 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 1.5 Hz, 1H), 6.88 (t, J = 1.2 Hz, 1H), 4.77 (d, J = 13.9 Hz, 1H), 4.52 (s, 1H), 3.75 
(s, 0H), 3.65 (d, J = 6.2 Hz, 3H), 2.93 (s, 3H), 2.83 (s, 3H), 2.50 (d, J = 1.0 Hz, 3H);  13C NMR (126 MHz, MeOD) δ 
159.13, 156.41, 146.29, 134.90, 133.66, 133.42, 129.24, 114.58, 112.36, 60.83, 52.71, 44.41, 40.24, 33.95, 22.12; 
HRMS (ESI): calcd for C17H25N4 [M + H]+, 285.2074; found, 285.2078. 
 
6-(4-(((3-Fluorobenzyl)amino)methyl)phenyl)-4-methylpyridin-2-amine (31). The title compound was prepared 
using General Methods D and B from 47 and 3-fluorobenzylamine. 39%; pale yellow gel;1H NMR (500 MHz, MeOD) δ 
7.95 (d, J = 5.7 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.52 (td, J = 8.0, 5.8 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.27 – 7.16 (m, 
1H), 7.07 (s, 1H), 6.71 (s, 1H), 4.38 (s, 2H), 4.35 (s, 2H), 2.42 (s, 3H); 13C NMR (126 MHz, MeOD) δ 162.88 (d, J = 
246.4 Hz), 156.78, 154.79, 135.85, 133.66 (d, J = 7.5 Hz), 133.11, 130.81 (d, J = 8.3 Hz), 130.56, 130.48, 127.51, 
125.75 (d, J = 3.1 Hz), 116.62 (d, J = 22.3 Hz), 116.10 (d, J = 21.3 Hz), 112.48, 109.76, 50.35, 50.19, 20.36; HRMS 
(ESI): calcd for C20H21FN3 [M + H]+, 322.1714; found, 322.1723. 
 
N-(4-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)benzyl)-2-(3-fluorophenyl)ethan-1-amine (49) The title 
compound was prepared using General Method D from (3-fluorophenyl)ethylamine. 81%; white gel; 1H NMR (500 MHz, 
CDCl3) δ 8.07 – 7.99 (m, 2H), 7.60 – 7.54 (m, 1H), 7.43 – 7.38 (m, 2H), 7.28 – 7.24 (m, 1H), 7.03 – 6.97 (m, 2H), 6.96 
– 6.88 (m, 2H), 5.95 (s, 2H), 3.90 (s, 2H), 2.95 (dd, J = 7.5, 6.0 Hz, 2H), 2.87 (t, J = 6.7 Hz, 2H), 2.51 (s, 3H), 2.24 (s, 
6H); 13C NMR (126 MHz, CDCl3) δ 162.92 (d, J = 245.7 Hz), 156.34, 151.78, 149.86, 142.26 (d, J = 7.3 Hz), 140.43, 
137.52, 129.93 (d, J = 8.3 Hz), 128.63, 128.59, 127.10, 124.42 (d, J = 2.7 Hz), 120.71, 119.42, 115.56 (d, J = 20.9 Hz), 
113.18 (d, J = 20.9 Hz), 106.78, 53.18, 49.83, 35.74, 21.33, 13.50; MS ESI [M + H]+ = 414.1 
 
6-(4-(((3-Fluorophenethyl)amino)methyl)phenyl)-4-methylpyridin-2-amine (32). The title compound was prepared 
using General Method B from 50. 60%; colorless gel; 1H NMR (500 MHz, MeOD) δ 7.98 – 7.91 (m, 2H), 7.82 – 7.73 (m, 
2H), 7.40 (td, J = 7.9, 6.0 Hz, 1H), 7.14 (d, J = 1.5 Hz, 1H), 7.11 (m, 2H), 7.08 – 7.01 (m, 1H), 6.86 (s, 1H), 4.39 (s, 2H), 
3.37 (m, 2H), 3.18 – 3.05 (m, 2H), 2.49 (s, 3H); 13C NMR (126 MHz, MeOD) δ 164.49 (d, J = 245.3 Hz), 159.05, 156.46, 
146.57, 140.46 (d, J = 7.4 Hz), 135.64, 134.42, 132.21, 131.83 (d, J = 8.4 Hz), 129.10, 125.74 (d, J = 2.9 Hz), 116.61 
(d, J = 21.8 Hz), 115.11 (d, J = 21.1 Hz), 114.43, 112.18, 51.74, 49.63, 32.91, 22.09; HRMS (ESI): calcd for C21H23FN3 
[M + H]+, 336.1871; found, 336.1876. 
 
3-(3-Chlorophenyl)-N-(4-(6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)benzyl)propan-1-amine (51). The 
title compound was prepared using General Method D from 3-(3-fluorophenyl)propylamine. 81%; white gel; 1H NMR 
(500 MHz, CDCl3) δ 8.10 – 7.98 (m, 2H), 7.62 – 7.56 (m, 1H), 7.46 – 7.39 (m, 2H), 7.26 – 7.15 (m, 3H), 7.08 (dt, J = 
7.3, 1.6 Hz, 1H), 6.99 – 6.95 (m, 1H), 5.94 (s, 2H), 3.86 (s, 2H), 2.69 (dt, J = 12.8, 7.4 Hz, 4H), 2.51 (s, 3H), 2.24 (s, 
6H), 1.95 – 1.78 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 156.45, 151.78, 149.83, 144.16, 141.41, 137.32, 134.05, 
132.15, 132.07, 129.60, 128.63, 128.53, 128.48, 127.04, 126.62, 125.99, 120.65, 119.40, 106.76, 53.61, 48.61, 33.28, 
31.44, 21.33, 13.50; MS ESI [M + H]+ = 444.1. 
 



6-(4-(((3-(3-Chlorophenyl)propyl)amino)methyl)phenyl)-4-methylpyridin-2-amine (33). The title compound was 
prepared using General Method B from 51. 70%; colorless gel; 1H NMR (500 MHz, MeOD) δ 7.95 – 7.91 (m, 2H), 7.74 
(d, J = 8.3 Hz, 2H), 7.35 – 7.28 (m, 2H), 7.25 (dt, J = 8.4, 1.3 Hz, 1H), 7.21 (dd, J = 7.6, 1.7 Hz, 1H), 7.12 (d, J = 1.4 
Hz, 1H), 6.82 (s, 1H), 4.33 (s, 2H), 3.18 – 3.05 (m, 2H), 2.76 (q, J = 7.6 Hz, 2H), 2.48 (s, 3H), 2.13 – 2.03 (m, 2H); 13C 
NMR (126 MHz, MeOD) δ 159.16, 156.38, 146.45, 144.00, 135.78, 132.20, 132.12, 131.24, 129.50, 129.12, 129.06, 
127.95, 127.62, 114.45, 112.22, 51.63, 48.30, 33.16, 28.68, 22.10; HRMS (ESI): calcd for C21H25ClN3 [M + H]+, 
366.1732; found, 366.1737. 
 
2-(5-((6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)ethynyl)pyridin-3-yl)acetonitrile (54). A reaction 
mixture of 52 (300 mg, 1.4 mmol), 53, (320 mg, 1.6 mmol), Pd(PPh3)2Cl2 (45 mg, 0.070 mmol), CuI (11 mg, 0.070 
mmol), PPh3 (74 mg, 0.28 mmol), diethylamine (3 mL), and DMF (3 mL) was heated at 120 °C for 20 min in the 
microwave cavity. Then diethyl ether (50 mL) was added to the reaction mixture, which was filtered and concentrated 
in vacuo. The residue was purified by flash chromatography (EtOAc/hexanes) to give the title compound (342 mg, 75%) 
as a pale yellow oil. 1H NMR (500 MHz, CDCl3) δ 8.79 (s, 1H), 8.56 (s, 1H), 7.92 (s, 1H), 7.44 (s, 1H), 7.07 (s, 1H), 
5.90 (s, 2H), 3.81 (s, 2H), 2.48 (s, 3H), 2.16 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 152.42, 152.15, 150.14, 148.46, 
141.63, 138.28, 128.54, 127.09, 125.88, 123.02, 119.88, 116.44, 107.06, 92.31, 84.58, 21.03, 20.97, 13.22; MS ESI 
[M + H]+ = 327.1. 
 
2-(5-(2-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)ethan-1-amine (55). A solution of 
54 (300 mg, 0.92 mmol) in EtOH (10 mL) and MeOH (10 mL) was stirred with Raney-Ni (50% in water, 0.5 mL) for 1 h 
at room temperature under a hydrogen atmosphere. The reaction mixture was filtered through a PTFE membrane filter 
(diam. 25 mm, pore size 0.2 µm) and concentrated in vacuo to give the crude title compound (300 mg). 1H NMR (500 
MHz, CDCl3) δ 8.30 (d, J = 2.3 Hz, 1H), 8.31 – 8.26 (m, 2H), 5.90 (s, 2H), 3.09 (s, 3H), 2.95 (t, J = 7.0 Hz, 2H), 2.71 (t, 
J = 7.0 Hz, 2H), 2.38 (s, 3H), 2.12 (s, 5H); 13C NMR (126 MHz, CDCl3) δ 160.09, 151.72, 149.69, 147.89, 147.82, 
136.46, 136.43, 134.75, 128.43, 122.72, 120.33, 106.73, 43.22, 39.14, 37.01, 32.63, 20.99, 13.24; MS ESI [M + H]+ = 
335.2. 
 
2-(5-(2-(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)ethyl)pyridin-3-yl)-N,N-dimethylethan-1-amine (56). 
Primary amine 55 (300 mg, ~ 0.9 mmol) and aqueous formaldehyde (10 mL) were dissolved in MeOH (10 mL) and 
CH2Cl2 (40 mL) and stirred for 30 min. After addition of NaBH(OAc)3 (1.27g, 6.0 mmol), the reaction mixture was stirred 
for 20 h at room temperature. Then the reaction mixture was treated with CH2Cl2 (60 mL) and saturated aqueous 
NaHCO3 solution (50 mL). The organic layer was partitioned, dried with MgSO4, and concentrated in vacuo. The 
residue was purified by flash chromatography (CH2Cl2/MeOH) to give the title compound (231 mg, 71%) as a pale 
yellow oil. 1H NMR (500 MHz, CDCl3) δ 8.17 (s, 1H), 8.14 (s, 1H), 7.19 (s, 1H), 6.78 (s, 1H), 6.75 (s, 1H), 5.77 (s, 2H), 
3.01 – 2.88 (m, 4H), 2.68 – 2.55 (m, 2H), 2.40 – 2.34 (m, 2H), 2.25 (s, 3H), 2.17 (s, 6H), 1.99 (d, J = 13.7 Hz, 6H); 13C 
NMR (126 MHz, CDCl3) δ 160.14, 151.75, 149.62, 147.78, 147.68, 136.32, 136.21, 135.23, 128.43, 122.75, 120.30, 
106.74, 60.99, 45.42, 39.23, 32.67, 31.29, 21.00, 13.27; MS ESI [M + H]+ = 363.2. 
 
6-(2-(5-(2-(Dimethylamino)ethyl)pyridin-3-yl)ethyl)-4-methylpyridin-2-amine (34). The title compound was 
prepared using General Method B from 56. 61%, pale yellow gel; 1H NMR (500 MHz, MeOD) δ 8.88 (s, 1H), 8.83 (s, 
1H), 8.80 (s, 1H), 6.76 (s, 1H), 6.72 (s, 1H), 3.62 (dd, J = 9.9, 6.4 Hz, 2H), 3.42 (dd, J = 10.0, 6.3 Hz, 2H), 3.36 – 3.33 
(dd, J = 10.0, 6.3 Hz, 2H), 3.20 (dd, J = 9.6, 6.4 Hz, 2H), 3.04 (s, 6H), 2.40 (s, 3H); 13C NMR (126 MHz, MeOD) δ 
159.09, 155.86, 149.20, 147.51, 147.26, 140.94, 138.48, 135.16, 115.04, 111.10, 62.82, 34.75, 33.80, 32.67, 30.18, 
21.97; HRMS (ESI): calcd for C17H25FN4 [M + H]+, 285.2074; found, 285.2077. 
 
2-((6-Chloropyridin-2-yl)methyl)-6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridine (58). A solution of 2-(2,5-
dimethyl-1H-pyrrol-1-yl)-4,6-dimethylpyridine (400 mg, 2.0 mmol) in THF (20 mL) was treated with BuLi (1.0 M in 
hexanes, 2.1 mmol) in an ice bath. After 30 min of stirring, a solution of 2,6-dichloropyridine (148 mg, 1.0 mmol) in THF 
(10 mL) was added dropwise, and the mixture was heated to reflux for 1 h. After being cooled to room temperature the 
mixture was quenched with brine (50 mL) and CH2Cl2 (50 mL), the organic layer was separated, dried with MgSO4, 
and concentrated in a vacuum. The residue was subjected to flash chromatography to give the title compound as a 
brown oil (48%). 1H NMR (500 MHz, CDCl3) δ 7.59 (d, J = 7.8 Hz, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.21 (d, J = 7.9 Hz, 
1H), 7.14 (s, 1H), 6.91 (s, 1H), 5.89 (s, 2H), 4.31 (s, 2H), 2.41 (s, 3H), 2.10 (s, 7H); 13C NMR (126 MHz, CDCl3) δ 
160.22, 158.15, 151.62, 150.69, 150.08, 139.10, 128.48, 123.16, 122.39, 122.09, 120.54, 106.79, 46.31, 21.07, 13.26; 
MS ESI [M + H]+ = 312.1. 
 
N1-(6-((6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)methyl)pyridin-2-yl)-N1,N2-dimethylethane-1,2-
diamine (59). The title compound was prepared using General Method B from XII and N1,N2-dimethylethane-1,2-
diamine. 55%, brown gel; 1H NMR (500 MHz, CDCl3) δ 7.38 (t, J = 8.5, 7.2 Hz, 1H), 7.14 (s, 1H), 6.87 (s, 1H), 6.52 (d, 
J = 7.2 Hz, 1H), 6.38 (d, J = 8.5 Hz, 1H), 5.89 (s, 2H), 4.16 (s, 2H), 3.72 (t, J = 6.3 Hz, 2H), 3.06 (s, 3H), 2.82 (t, J = 
6.3 Hz, 2H), 2.44 (s, 3H), 2.38 (s, 3H), 2.12 (s, 6H); 13C NMR (126 MHz, CDCl3) δ 159.99, 158.51, 157.33, 151.28, 



149.31, 137.72, 128.49, 123.08, 120.04, 111.16, 106.60, 103.11, 49.94, 49.66, 47.05, 36.70, 36.54, 21.08, 13.23; MS 
ESI [M + H]+ = 364.1. 
 
N1-(6-((6-Amino-4-methylpyridin-2-yl)methyl)pyridin-2-yl)-N1,N2-dimethylethane-1,2-diamine (35). The title 
compound was prepared using General Method C from 59. 63%, pale yellow gel; 1H NMR (500 MHz, MeOD) δ 7.68 (t, 
1H), 6.82 (d, 1H), 6.76 (d, J = 7.3 Hz, 1H), 6.71 (s, 1H), 6.69 (d, J = 1.4 Hz, 1H), 4.20 (s, 2H), 4.00 (t, J = 5.9 Hz, 2H), 
3.31 (t, J = 5.8 Hz, 2H), 3.15 (s, 3H), 2.74 (s, 3H), 2.38 (s, 3H); 13C NMR (126 MHz, MeOD) δ 159.14, 155.82, 115.55, 
113.57, 111.19, 34.24, 21.97. HRMS (ESI): calcd for C16H24N5 [M + H]+, 286.2026; found, 286.2029 
 
Methyl 3-((6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)methyl)benzoate (61). Benzyl bromide (458 mg, 
2.0 mmol) was added dropwise to a suspension of zinc dust (500 mg, 8.0 mmol) in dry THF. After being stirred for 15 
min, the mixture was added to a solution of 2-bromo-6-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyridine (795 mg, 3.0 
mmol) and Pd(PPh3)4 (50 mg, 0.4 mmol) in THF (20 mL). After being stirred overnight the mixture was filtered using a 
short alumina column, and then concentrated under vacuum. Column chromatography gave the title product as a 
colorless oil (68%). 1H NMR (500 MHz, CDCl3) δ 7.99 (s, 1H), 7.93 (dt, J = 7.7, 1.5 Hz, 1H), 7.53 (dt, J = 7.7, 1.5 Hz, 
1H), 7.40 (t, J = 7.7 Hz, 1H), 6.96 (s, 1H), 6.90 (s, 1H), 5.90 (s, 2H), 4.20 (s, 2H), 3.93 (s, 3H), 2.38 (s, 3H), 2.11 (s, 
6H); 13C NMR (126 MHz, CDCl3) δ 167.10, 159.94, 151.63, 150.00, 139.80, 133.84, 130.36, 130.18, 128.61, 128.51, 
127.74, 122.60, 120.33, 106.79, 52.14, 43.98, 21.08, 13.24; ESI MS m/z (M+H)+ = 335.2. 
 
3-((6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)methyl)benzaldehyde (62). A solution of DIBALH in 
hexane (1.0 M, 1.4 mL, 1.4 mmol) was added slowly to a solution of 61 (400 mg, 1.2 mmol) in toluene (10 mL) at -
78 °C. The solution was stirred at the same temperature for 1 h and then diluted with ethyl ether (20 mL). After careful 
addition of 1 N HCl (5 mL) at room temperature, the mixture was stirred for 10 min. The organic layer was washed with 
brine, dried over MgSO4, and evaporated. Column chromatography with a silica gel cartridge gave title product 62 as a 
colorless oil (38%). 1H NMR (500 MHz, CDCl3) δ 10.02 (s, 1H), 7.82 (d, J = 1.8 Hz, 1H), 7.77 (dt, J = 7.6, 1.5 Hz, 1H), 
7.62 (dt, J = 7.7, 1.5 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.23 (td, J = 7.7, 1.7 Hz, 1H), 7.00 (s, 1H), 6.91 (s, 1H), 5.90 (s, 2H), 
4.24 (s, 2H); 13C NMR (126 MHz, CDCl3) δ 192.46, 159.59, 151.72, 150.22, 140.58, 136.64, 133.45, 130.11, 128.50, 
128.18, 128.04, 122.69, 120.52, 106.85, 43.78, 21.10, 13.23; ESI MS m/z (M+H)+ = 305.1. 
 
N1-(3-((6-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-methylpyridin-2-yl)methyl)benzyl)-N1,N2-dimethylethane-1,2-diamine 
(63). The title compound was prepared using General Method D from 62. 55%; brown oil; 1H NMR (500 MHz, CDCl3) δ 
7.28 – 7.23 (m, 2H), 7.23 – 7.14 (m, 2H), 6.96 (d, J = 6.3 Hz, 1H), 6.87 (s, 1H), 5.90 (s, 2H), 4.14 (s, 2H), 3.60 – 3.47 
(m, 2H), 3.45 – 3.27 (m, 3H), 2.84 (s, 3H), 2.61 – 2.46 (m, 2H), 2.37 (s, 3H), 2.25 (s, 4H), 2.12 (s, 6H); 13C NMR (126 
MHz, CDCl3) δ 160.73, 155.72, 151.48, 149.74, 139.43, 139.31, 129.64, 128.48, 127.83, 126.95, 122.59, 120.10, 
106.69, 62.58, 54.94, 46.95, 44.23, 42.54, 34.56, 21.06, 13.25; ESI MS m/z (M+H)+ = 377.1. 
 
N1-(3-((6-Amino-4-methylpyridin-2-yl)methyl)benzyl)-N1,N2-dimethylethane-1,2-diamine (36). The title compound 
was prepared using General Method C from 63. 75%; pale yellow gel; 1H NMR (500 MHz, MeOD) δ 7.74 (s, 1H), 7.57 
(s, 1H), 7.52 (s, 1H), 7.47 (s, 1H), 6.71 (s, 1H), 6.69 (s, 1H), 4.63 (d, J = 12.9 Hz, 1H), 4.40 (d, J = 12.7 Hz, 1H), 4.16 
(s, 2H), 3.80 – 3.66 (m, 3H), 3.62 – 3.55 (m, 1H), 2.89 (s, 3H), 2.81 (s, 3H), 2.39 (s, 3H); 13C NMR (126 MHz, MeOD) δ 
159.30, 156.15, 148.59, 138.79, 133.28, 132.09, 131.71, 131.14, 131.11, 115.70, 111.31, 61.48, 52.41, 44.42, 40.21, 
39.17, 33.91, 22.04;  HRMS (ESI): calcd for C18H27N4 [M + H]+, 299.2230; found, 299.2234. 
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