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NF-kB links innate immunity to the hypoxic response
through transcriptional regulation of HIF-1a
Jordi Rius1,2,3, Monica Guma1,2,3, Christian Schachtrup2, Katerina Akassoglou2, Annelies S. Zinkernagel4,
Victor Nizet4,5, Randall S. Johnson6, Gabriel G. Haddad4 & Michael Karin1,2,3

The hypoxic response is an ancient stress response triggered by
low ambient oxygen (O2) (ref. 1) and controlled by hypoxia-
inducible transcription factor-1 (HIF-1), whose a subunit is
rapidly degraded under normoxia but stabilized when O2-depend-
ent prolyl hydroxylases (PHDs) that target its O2-dependent
degradation domain are inhibited2–4. Thus, the amount of
HIF-1a, which controls genes involved in energy metabolism
and angiogenesis, is regulated post-translationally. Another
ancient stress response is the innate immune response, regulated
by several transcription factors, among which NF-kB plays a
central role5,6. NF-kB activation is controlled by IkB kinases
(IKK), mainly IKK-b, needed for phosphorylation-induced degra-
dation of IkB inhibitors in response to infection and inflam-
mation7. IKK-b is modestly activated in hypoxic cell cultures
when PHDs that attenuate its activation are inhibited8.
However, defining the relationship between NF-kB and HIF-1a
has proven elusive. Using in vitro systems, it was reported that
HIF-1a activates NF-kB9, that NF-kB controls HIF-1a transcrip-
tion10 and that HIF-1a activation may be concurrent with inhibi-
tion of NF-kB11. Here we show, with the use of mice lacking IKK-b
in different cell types, that NF-kB is a critical transcriptional activ-
ator of HIF-1a and that basal NF-kB activity is required for HIF-1a
protein accumulation under hypoxia in cultured cells and in the
liver and brain of hypoxic animals. IKK-b deficiency results in
defective induction of HIF-1a target genes including vascular
endothelial growth factor. IKK-b is also essential for HIF-1a
accumulation in macrophages experiencing a bacterial infection.
Hence, IKK-b is an important physiological contributor to the
hypoxic response, linking it to innate immunity and inflammation.

Hypoxia is characterized by a decreased O2 tension within cells and
can occur under several pathophysiological situations including isch-
aemia, cancer and inflammation12. During ischaemia, the flow of
nutrients and O2 to damaged tissues is decreased and HIF-1a activa-
tion induces genes whose products restore blood supply, nutrients and
energy production, thereby maintaining tissue integrity and home-
ostasis13,14. The hypoxic response is important for the proper function
of tissue macrophages and infiltrating neutrophils that encounter low
O2 tension in infected tissues and after bacterial replication15. HIF-1a
was also suggested to promote the expression of inflammatory cyto-
kines, which are known to be regulated by NF-kB16, in lipopoly-
saccharide (LPS)-stimulated macrophages17 and mediate NF-kB
activation in anoxic neutrophils9. However, it was also reported that
hypoxia leads to modest IKK-b activation by inhibiting PHDs that
negatively modulate IKK-b activity8. We therefore decided to critically
explore the relationship between IKK-b, NF-kB and HIF-1a under
in vivo conditions in IKK-b-deficient mice and primary macrophages.

We first examined bone marrow-derived macrophages (BMDM)
from either IKKbF/F or IKKbF/F/Mx1Cre mice challenged with
poly(I)Npoly(C), which induces interferon (IFN) and thereby drives
CRE recombinase expression from the Mx1 promoter to delete IKKb
in IFN-responsive cells of the resulting IKKbD mice18. BMDM were
incubated with Gram-positive (group A Streptococcus; GAS) and with
Gram-negative (Pseudomonas aeruginosa) bacteria. Both species
induced HIF-1a accumulation in an IKK-b-dependent manner
(Fig. 1a). The induction of HIF-1 target genes involved in the hypoxic
and innate immune responses was also dependent on IKK-b (Fig. 1b).
These genes included Cox-2, which is directly regulated by NF-kB
and HIF-1a, Cnlp, which encodes the murine antimicrobial peptide
mCRAMP, whose expression is not directly responsive to NF-kB19,
and Glut-1, encoding a glucose transporter. Moreover, Hif1a mRNA
was markedly downregulated in IKK-b-deficient cells even before
infection (Fig. 1b). IkB degradation and the nuclear accumulation
of RelA/NF-kB preceded HIF-1a expression (Fig. 1c), indicating that
NF-kB may control Hif1a gene transcription. Indeed, chromatin
immunoprecipitation (ChIP) in LPS-stimulated macrophages
revealed that RelA is recruited to the Hif1a promoter, which contains
a classical kB site at 2197/2188 base pairs, conserved between mice
and humans (Fig. 1d). Furthermore, the basal levels of Hif1a
mRNA were decreased in RelA-deficient fibroblasts even under
resting conditions (Supplementary Fig. 1), suggesting that NF-kB
activity is required for effective Hif1a mRNA expression even in
non-stimulated cells.

As found elsewhere8, hypoxia modestly activated IKK in macro-
phages (Fig. 2a), induced the phosphorylation of IKK-a/b and IkBa
and promoted IkBa degradation (Fig. 2b). Hypoxia also induced the
nuclear translocation of RelA, which preceded HIF-1a accumulation
(Fig. 2c), as occurred in bacteria-infected macrophages (Fig. 1c).
Binding of NF-kB to a canonical kB DNA site was also induced by
hypoxia (Fig. 2d). We examined whether IKK-b was required for
hypoxia-induced HIF-1a accumulation, a response that is thought
to be dependent mainly on inhibition of HIF-1a degradation3,4.
IKK-b was required for the optimal accumulation of HIF-1a, but
not of HIF-2a, in BMDM incubated with the hypoxia mimetic desfer-
rioxamine (DFX) as well as in response to actual hypoxia (Fig. 3a, b).
IKK-b also did not affect HIF-2a expression in infected macrophages
(Fig. 1a). The overexpression of a non-degradable IkBa (IkB super-
repressor) also blocked HIF-1a accumulation induced by hypoxia in
HEK-293 cells (Supplementary Fig. 2). The hypoxia-dependent
induction of HIF-1 target genes, such as those encoding vascular
endothelial growth factor (VEGF) and GLUT-1, was nearly abolished
in IKK-b-deficient macrophages (Fig. 3c) or fibroblasts (Supple-
mentary Fig. 3). Expression of Hif1a, but not Hif2a, mRNA was
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substantially decreased in the absence of IKK-b even under normoxia
(Fig. 3c), further supporting the notion that basal NF-kB activity is
required for the expression of enough Hif1a mRNA at all times to
result in the rapid accumulation of HIF-1a protein, which occurs
only under hypoxic conditions. Activation of NF-kB by LPS induced
Hif1a promoter activity (Supplementary Fig. 4), elevated HIF-1a
expression in hypoxic cells (Fig. 3d) and potentiated the induction
of Vegf mRNA (Supplementary Fig. 5). Despite substantial expres-
sion of Hif1a mRNA in LPS-stimulated normoxic macrophages
(Supplementary Fig. 5), these cells do not accumulate HIF-1a protein
(Fig. 3d), which echoes findings in T cells stimulated with anti-CD3
antibody20. Hence, NF-kB activation without hypoxic inhibition of
PHDs is insufficient for HIF-1a protein accumulation. In mouse
fibroblasts, IKK-b was required for basal Hif1a promoter activity
and its stimulation by treatment with DFX (Fig. 3e).

We next examined the role of IKK-b in HIF-1 activation in intact
mice. Administration of DFX induced HIF-1a expression in liver of
IKKbF/F mice but not in IKKbD mice (Fig. 4a), which lack IKK-b in
both hepatocytes and Kupffer cells21. IKKbD mice also contained less
Hif1a and Vegf mRNA in their livers (Fig. 4b). We also examined the
role of IKK-b in the response to actual hypoxia. Mice were placed in a
chamber with an ambient O2 concentration of 8% (thus mimicking
an altitude of 7,000 m (ref. 22)). Under these conditions we observed
hypoxia-induced HIF-1a accumulation in liver (Fig. 4c) and brain
(Fig. 4d) and in both cases it was dependent on IKK-b in CRE-
expressing cells. In the brain the predominant CRE-expressing cells

were astrocytes (Supplementary Fig. 6) and not neurons (data not
shown), thus explaining the partial deletion of IKK-b in this tissue
(Fig. 4d). Despite this, hypoxia-induced VEGF protein (Fig. 4e) and
Vegf mRNA (Fig. 4f) were IKK-b dependent. IKKbD mice showed a
profound increase in cerebellar astrocyte activation, marked by glial
fibrillary acidic protein, relative to IKKbF/F mice (Supplementary
Fig. 7). This may have been due to defective production of VEGF,
a cytokine with anti-inflammatory properties that has been shown to
promote tissue repair23. VEGF is also a potent neuroprotective fac-
tor24 whose decreased production may potentiate hypoxia-induced
neuronal damage and thereby augment astrocyte activation. This
situation may be akin to a loss of IKK-b in intestinal epithelial cells,
which has previously been found to exacerbate ischaemic damage to
the intestinal mucosa25. These results suggest that IKK-b inhibitors
may not be useful in the treatment of neuroinflammatory disorders.

Although early studies demonstrated the induction of Hif1a mRNA
in experimental animals during development and hypoxia26,27,
numerous in vitro studies led to the current model that the accumula-
tion of HIF-1a is regulated predominantly at the post-translational
level through the inhibition of O2-dependent PHDs that drive HIF-1a
degradation under normoxia3,4. Our results show clearly that tran-
scriptional activation of the Hif1a gene by IKK-b-responsive NF-kB,
which precedes HIF-1a protein accumulation, is of critical import-
ance under pathophysiologically relevant conditions ex vivo and
in vivo. Both macrophages infected with bacteria and mice subjected
to hypoxia reveal a pronounced defect in HIF-1a expression on loss of
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Figure 1 | IKK-b is required for microbial-induced HIF-1a expression in
macrophages. a, BMDM from either IKKbF/F (IKKb1/1) or
poly(I)Npoly(C)-injected IKKbF/F/Mx1-Cre (IKKbD; IKKb2/2) mice were
incubated with either with GAS or P. aeruginosa (MOI of 10 for 4 h).
Expression of the indicated proteins was analysed by immunoblotting.
b, RNA was extracted from BMDM incubated with GAS and gene expression
was analysed by quantitative RT–PCR. Results are averages of three separate
experiments done in triplicate, and are shown as means and s.e.m. Values are

normalized relative to 18S rRNA. Light grey bars, control; dark grey bars,
GAS. Cramp, gene encoding cathelicidin antimicrobial peptide. c, RAW264.7
macrophages were incubated with GAS and protein expression was analysed
by immunoblotting at the indicated time points. d, ChIP was performed with
an anti-RelA antibody using fixed and sheared chromatin isolated from
RAW264.7 mouse macrophages incubated for 1 h with or without LPS. The
Hif1a promoter fragment, which contains akB site at 2197/2188 base pairs,
was detected by PCR amplification.
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IKK-b. The IKK-b/NF-kB–HIF-1a crosstalk is not critical during
normal embryonic development, because the respective gene dele-
tions result in different phenotypes. Whereas Hif1a2/2 embryos die
prematurely at embryonic day 9.5, mainly as a result of defects in
neural fold closure and capillary development13,14, IKK-b2/2 embryos

die later, at embryonic day 13.5, from massive liver apoptosis driven
by TNF28,29.

Previous findings identified a connection between HIF-1a and
innate immunity and inflammation, but it was not clear how micro-
bial infection or inflammation led to HIF-1a activation15,19. Our
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was analysed by quantitative RT–PCR. Light grey bars, normoxia; dark grey
bars, hypoxia. Results are means and s.e.m. for three separate experiments
performed in triplicate. *, P , 0.05 versus normoxic IKKb1/1 cells; {,

P , 0.05 versus hypoxic IKKb1/1 cells. PGK, phosphoglucokinase; iNOS,
inducible nitric oxide synthase. d, RAW264.7 macrophages were cultured in
the absence or presence of LPS under the indicated O2 tensions for 2 h.
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fibroblasts from IKKb1/1 or IKKb2/2 embryos were transfected with a
luciferase reporter gene driven by the Hif1a promoter. After 36 h the cells
were incubated for 3 h with DFX. Light grey bars, control; dark grey bars,
DFX. Results are means and s.e.m. for three separate experiments performed
in triplicate.
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results, together with the previous finding that IKK-b catalytic
activity is controlled by O2-sensitive PHDs8, establish NF-kB as a
hypoxia-regulated transcription factor that controls Hif1a mRNA
expression both under basal conditions and during hypoxia,
thereby serving as a regulator of the hypoxic response. Our findings
demonstrate that this depends on NF-kB activation, which controls
Hif1a mRNA expression, but accumulation of HIF-1a protein
requires hypoxia, which in bacterial infection may be due to deple-
tion of intracellular oxygen by replicating bacteria. These findings
have far-reaching physiological implications because they indicate
the existence of coupling between two evolutionary ancient
stress responses: innate immunity and the hypoxic response. By
controlling HIF-1a activation in macrophages during microbial
infections, which may lower local O2 tension, NF-kB can enhance
glycolytic energy metabolism and the production of angiogenic
factors, in addition to its well-established role in the expression
of proinflammatory cytokines, chemokines and antimicrobial pep-
tides. In addition to more effective execution of the host-defence
response, the ability of NF-kB to promote HIF-1a activation
expands its pro-survival function because the HIF-1-dependent
hypoxic response is critical for providing cells and tissues under-
going ischaemia with sufficient energy supplies and allows them to
resist cell death.

By serving as an essential component of the hypoxic response
in vivo, IKK-b also performs a homeostatic function in the brain,

an organ that is extremely sensitive to deprivation of oxygen and
glucose30.

METHODS SUMMARY

To delete IKK-b in IKKbF/F/Mx1Cre mice, 250mg of poly(I)Npoly(C) (Sigma)

was injected intraperitoneally on three alternate days, three weeks before expo-

sure to hypoxia or isolation of myeloid cells18. To induce hypoxia in vivo, mice

were placed in a special chamber in which N2 and O2 were injected to achieve an

O2 concentration of 8 6 0.1%. This was controlled by the Oxycycler hydraulic

system (Model A44x0; BioSpherix) and ANA-Win2 software (Version 2.4.17;

Watlow Anafaze). Control mice were kept in the same room under normal

atmospheric O2 and were exposed to the same level of noise and light during

each experiment. After 24 h of normoxia or hypoxia, mice were killed and their

livers and brains were rapidly removed and frozen in liquid N2 or OCT with a

solid CO2/2-methylpropan-1-ol bath.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Quantitative RT–PCR. Total RNA was extracted with Trizol (Invitrogen) and

reverse-transcribed with random hexamers and SuperScript II Kit (Invitrogen).

Real-time PCR was performed with SYBR Green PCR Master Mix Kit (Applied

Biosystems). The following primer pairs were used: VEGF, 59-CCACGTC-

AGAGAGCAACATCA-39 and 59-TCATTCTCTCTATGTGCTGGCTTT-39;

PGK, 59-GGAAGCGGGTCGTGATGA-39 and 59-GCCTTGATCCTTTGG-

TTGTTTG-39; GLUT-1, 59-CATCCTTATTGCCCAGGTGTTT-39 and 59-

GAAGACGACACTGAGCAGCAGA-39; iNOS, 59-GGCAGCCTGTGAGACC-

TTTG-39 and 59-CATTGGAAGTGAAGCGTTTCG-39; COX-2, 59-GTGGAAA-
AACCTCGTCCAGA-39 and 59- GCTCGGCTTCCAGTATTGAG-39; HIF-1a,

59-ACAAGTCACCACAGGACAG-39 and 59-AGGGAGAAAATCAAGTCG-39;

HIF-2a, 59-CAACCTGCAGCCTCAGTGTATC-39 and 59-CACCACGTCG-

TTCTTCTCGAT-39; 18S rRNA, 59-CGCCGCTAGAGGTGAAATTCT-39 and

59- CGAACCTCCGACTTTCGTTCT-39.

Immunoblotting. Whole-cell extracts were obtained by lysing cells in 1% SDS,

10 mM Tris-HCl pH 7.4. Cytoplasmic and nuclear extracts were obtained as

described2. Proteins were separated by SDS–PAGE and detected by immuno-

blotting. Blots were incubated with antibodies against phosphorylated IKK-a/b,

phosphorylated IkBa, IKK-a, IKK-b, IkBa, RelA and histone H3 (all from Santa

Cruz Biotechnology), actin (Sigma), HIF-1a, HIF-2a and HIF-1b (Novus).

Chromatin immunoprecipitation. Chromatin immunoprecipitation (ChIP)

was performed with ChIP-IT Express Kit (Active Motif) in accordance with

the manufacturer’s instructions. Chromatin was precipitated with RelA antibod-

ies (Santa Cruz Biotechnology). Samples were analysed by PCR. The murine

HIF-1a and actin promoters were amplified with the primer pairs 59-

CACCCCCATCTCCTTTCTCT-39 and 59-GGGTTCCTCGAGATCCAATG-

39, and 59-TGCACTGTGCGGCGAAGC-39 and 59-TCGAGCCATAAAAGG-
CAA-39, respectively.

Luciferase assay. A murine HIF-1a-luciferase reporter, pHIF-1a/Luc, was

kindly provided by S. W. Ebbinghaus. pHIF-1a/Luc was co-transfected with

the internal control pRL-TK into either IKKb1/1 or IKKb2/2 MEFs with

Lipofectamine 2000 (Invitrogen). Luciferase activity was measured with the

Dual-luciferase reporter assay system (Promega). Results are presented as rela-

tive reporter activity after normalization to the internal control pRL-TK.

Statistical analysis. Results are expressed as means and s.e.m. A Stat View II

(Abacus Concepts) statistical package was used for all analyses: multiple groups

were compared by one-factor analysis of variance, followed by Fisher’s protected

least-squares difference to assess specific group differences.
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